Метрология погрешность средства контроля

Метрология погрешность средства контроля

РЕКОМЕНДАЦИИ ПО МЕЖГОСУДАРСТВЕННОЙ СТАНДАРТИЗАЦИИ

Государственная система обеспечения единства измерений

ИСПОЛЬЗОВАНИЕ ПОНЯТИЙ "ПОГРЕШНОСТЬ ИЗМЕРЕНИЯ" И "НЕОПРЕДЕЛЕННОСТЬ ИЗМЕРЕНИЙ"

State system for ensuring the uniformity of measurements. Use of concepts "error of measurement" and "uncertainty of measurement". General principles

____________________________________________________________________
Текст Сравнения РМГ 91-2019 с РМГ 91-2009 см. по ссылке.
— Примечание изготовителя базы данных.
____________________________________________________________________

Дата введения 2020-09-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о рекомендациях

1 РАЗРАБОТАНЫ Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений" (ФГУП "ВНИИФТРИ")

2 ВНЕСЕНЫ Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТЫ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 сентября 2019 г. N 122-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Беларусь

4 Приказом Федерального агентства по техническому регулированию и метрологии от 30 октября 2019 г. N 1058-ст рекомендации по межгосударственной стандартизации РМГ 91-2019 введены в действие в качестве рекомендаций по стандартизации Российской Федерации с 1 сентября 2020 г.

Информация о введении в действие (прекращении действия) настоящих рекомендаций и изменений к ним на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящих рекомендаций соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

Введение

В настоящих рекомендациях уточнен смысл основных понятий "погрешность измерения" и "неопределенность измерений" и производных от них терминов, представлены рекомендации по логически непротиворечивому применению данных понятий в различных метрологических задачах.

Положения, изложенные в настоящих рекомендациях, предназначены для использования в законодательной и прикладной метрологии.

1 Область применения

Настоящие рекомендации содержат основные принципы применения понятий "погрешность измерения" и "неопределенность измерений" и производных от них понятий, рекомендуемые для использования при разработке нормативных документов по различным метрологическим задачам.

Положения, содержащиеся в настоящих рекомендациях, рекомендуется применять в документах всех видов, в научно-технической, учебной и справочной литературе по метрологии, входящих в сферу работ по стандартизации и (или) использующих результаты этих работ.

2 Нормативные ссылки

В настоящих рекомендациях использованы нормативные ссылки на следующие межгосударственные документы:

ГОСТ 8.009 Государственная система обеспечения единства измерений. Нормируемые метрологические характеристики средств измерений

ГОСТ 8.010 Государственная система обеспечения единства измерений. Методики выполнения измерений. Основные положения

ГОСТ 8.061 Государственная система обеспечения единства измерений. Поверочные схемы. Содержание и построение

ГОСТ 8.381 Государственная система обеспечения единства измерений. Эталоны. Способы выражения точности

ГОСТ 8.401 Государственная система обеспечения единства измерений. Классы точности средств измерений. Общие требования

ГОСТ 34100.1/ISO/IEC Guide 98-1:2009 Неопределенность измерения. Часть 1. Введение в руководства по выражению неопределенности измерения

ГОСТ 34100.3/ISO/IEC Guide 98-3:2008 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения

РМГ 29-2013 Государственная система обеспечения единства измерений. Метрология. Основные термины и определения

РМГ 83 Государственная система обеспечения единства измерений. Шкалы измерений. Термины и определения

Примечание — При пользовании настоящими рекомендациями целесообразно проверить действие ссылочных документов и классификаторов на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации (www.easc.by), или по указателям национальных стандартов, издаваемым в государствах, указанных в предисловии, или на официальных сайтах соответствующих национальных органов по стандартизации. Если на документ дана недатированная ссылка, то следует использовать документ, действующий на текущий момент, с учетом всех внесенных в него изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то следует использовать указанную версию этого документа. Если после принятия настоящих рекомендаций в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение применяется без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Исходные положения

Существует принципиальное различие между понятиями "погрешность измерения" и "неопределенность измерений" (см. руководство [1]*), но не исключена возможность достаточно правильного использования понятия "погрешность". При этом подразумевается, что конкретная погрешность всегда имеет определенный знак (положительный или отрицательный). По определению в отличие от понятия "погрешность" понятие "неопределенность" характеризует рассеяние значений, которые могли бы быть обоснованно приписаны измеряемой величине.

* Поз.[1]-[8] см. раздел Библиография. — Примечание изготовителя базы данных.

Некорректность применения понятия "погрешность" проявляется при его смешении с другими по смыслу понятиями, такими как "характеристики погрешности результата измерения", "доверительные границы погрешности". Значение погрешности конкретного результата измерения получают алгебраическим суммированием (со своими знаками) всех ее составляющих в рассматриваемом эксперименте с конкретным экземпляром средства измерений, а при оценке характеристик погрешности оперируют множеством возможных значений погрешностей (без учета их знаков) в виртуальных или реальных экспериментах с различными экземплярами средств измерений данного типа при допустимом варьировании условий измерений. Поэтому общепринятые оценки среднего квадратического отклонения, границ неисключенной систематической погрешности, доверительных границ погрешности измерения и других показателей точности не соответствуют исходному определению погрешности. Эти оценки фактически характеризуют не погрешность, а разброс значений, приписываемых измеряемой величине на основе используемой информации, т.е. неопределенность.

Понятия "погрешность измерения" и "неопределенность измерений" следует применять в соответствии с их определениями, не подменяя погрешность оценками параметров и составляющих рассеяния результатов измерений.

4 Комментарии к основным терминам

Термины, являющиеся наиболее важными для понимания основных принципов применения понятий "погрешность измерения" и "неопределенность измерений", с соответствующими им определениями приведены ниже. В комментариях даны необходимые пояснения, а также рассмотрены вопросы, связанные с отличиями в формулировках терминов или соответствующих им определений по РМГ 29 от формулировок терминов и определений по руководству [1] и словарю [2].

Вышеназванные отличия не влияют на смысл и содержание рекомендаций по использованию понятий "погрешность измерения" и "неопределенность измерений", приведенных в настоящих рекомендациях.

результат (измерения величины): Множество значений величины, приписываемых измеряемой величине вместе с любой другой доступной и существенной информацией.

1 Определение понятия результата измерения претерпело существенное изменение по сравнению с определением РМГ 29-99 и вобрало в себя выражение точности измерения. Информация, приводимая в результате измерения, определяется особенностями конкретного измерения и соответствует требованиям, предъявляемым к этому измерению. В большинстве случаев информация относится к точности измерения и выражается показателями точности, в обоснованных случаях содержит указание методики измерений и др.

2 Результат измерения может быть представлен измеренным значением величины с указанием соответствующего показателя точности. К показателям точности относятся, например, среднее квадратическое отклонение, доверительные границы погрешности, стандартная неопределенность измерений, суммарная стандартная и расширенная неопределенности. VIM3 предусматривает также представление результата измерения плотностью распределения вероятностей на множестве возможных значений измеряемой величины.

3 Если значение показателя точности измерений можно считать пренебрежимо малым для заданной цели измерения, то результат измерения может выражаться как одно измеренное значение величины. Во многих областях это является обычным способом выражения результата измерения, с указанием класса точности применяемого средства измерений.

Комментарий — Определение результата измерения (см. статью 2.9 словаря [2]), соответствует определению (4.1), при этом в примечаниях к данному определению:

— допускается представление результата измерения плотностью распределения вероятностей на множестве возможных значений измеряемой величины;

— рекомендуется выражать результат измерения, как правило, "одним измеренным значением величины и неопределенностью измерений", что отличается от положений статьи 5.1, примечания 2 РМГ 29-2013 в части использования в качестве показателей точности доверительных границ погрешности.

Термин "результат измерения" и термин "измеренное значение", используемый для определений понятий точности измерений и погрешности (результата измерения), не равнозначны.

измеренное значение (величины): Значение величины, которое представляет результат измерения.

точность измерений; точность результата измерения: Близость измеренного значения к истинному значению измеряемой величины.

Комментарий — В статье 2.13 словаря [2] термину (4.3) соответствуют термины "точность измерений", "точность".

Точность измерений не является величиной, и ей не может быть присвоено числовое значение величины.

опорное значение (величины): Значение величины, которое используют в качестве основы для сопоставления со значениями величин того же рода.

Комментарий — Опорное значение величины может быть истинным значением величины, подлежащей измерению, в этом случае оно неизвестно и применяется только в теоретических исследованиях, или принятым значением величины, в этом случае оно известно. Если неопределенность измерений, связанная с принятым значением, достаточно мала и может быть принята равной нулю для конкретной цели, то используют понятие "действительное значение величины".

погрешность (результата измерения): Разность между измеренным значением величины и опорным значением величины.

1 Если опорное значение величины известно, как, например, при калибровке средств измерений, то известно и значение погрешности измерения. Если в качестве опорного значения выступает истинное значение величины, то значение погрешности неизвестно.

2 В РМГ 29-99 использовался термин "погрешность результата измерения": отклонение результата измерения от истинного (действительного) значения измеряемой величины. Изменение термина вызвано изменением понятия "результат измерения".

3 Погрешность измерения равна сумме случайной и систематической погрешностей.

Комментарий — Определению (4.5) соответствуют термины "погрешность измерения", "погрешность" (без слова "результата") (см. статью 2.16 словаря [2]). В РМГ 29 данные термины также использованы как краткие формы термина "погрешность (результата измерения)". В связи с этим в тексте настоящих рекомендаций в дальнейшем для понятия "погрешность", имеющего идентичные определения согласно РМГ 29-2013 (статья 5.16) и словарю [2] (статья 2.16), применены термины "погрешность результата измерения", "погрешность измерения" или "погрешность", являющиеся синонимами.

В соответствии с определением (4.5) погрешность измерения рассчитывают по формуле

Читайте также:  Республиканский центр метрологии глазов

Источник



Правила поверки и калибровки средств измерений

Внимание! Статья носит информационный характер. Для получения подробной информации об услугах, пожалуйста, обращайтесь к нашим менеджерам.

К измерительным приборам предъявляются определенные требования. Все устройства должны гарантировать точность данных, полученных при их использовании. Обеспечить достоверность показателей и своевременно выявить неисправности можно с помощью регулярной поверки. Процедура проводится согласно ст. 13 Закона № 102 РФ, регулирующего единство измерений.

Поверка — это совокупность мер по определению соответствия устройства заявленным метрологическим требованиям и стандартам.

Виды поверок

Рассмотрим основные разновидности контрольной процедуры:

  1. первичная — осуществляется перед началом эксплуатации или в случае, если СИ подвергалось ремонту;
  2. периодическая — проводится по календарю, который устанавливается нормативно-правовыми актами;
  3. внеочередная — может быть организована в связи с определенными обстоятельствами;
  4. инспекционная — проводится специализированными службами в ходе осуществления плановых или внеплановых проверок;
  5. экспертная — необходима для урегулирования разногласий, возникающих между предприятиями, метрологическими службами, пользователями СИ по поводу эксплуатационной пригодности устройств.

Первичная

Это обязательная процедура, которая проводится перед вводом в эксплуатацию любого средства измерения. Чаще всего ее организуют одновременно с приемочными испытаниями или по их завершении. Согласно установленным требованиям, процедура проводится до момента установки прибора в месте его эксплуатации. Эффективность поверки достигается благодаря испытаниям каждого экземпляра. В некоторых случаях может быть проведен и выборочный анализ. Решение об организации того или иного метода зависит от экономических и логистических факторов, а также конструктивных особенностей техники.

Испытания могут осуществляться в несколько этапов:

  1. начальный этап организуется в процессе приемки-передачи;
  2. завершающий — после установки оборудования на месте эксплуатации и начала его работы.

Такой поэтапный подход актуален для приборов сложной конструкции.

В нашей стране поверку должны проходить СИ зарубежного производства, даже если они уже были испытаны специализированными службами изготовителя. Это правило не действует в отношении продукции, выпускаемой государствами, с которыми Федеральное агентство по техническому регулированию и метрологии РФ заключило специальные международные соглашения. В этом случае к товару должны прилагаться сопроводительные документы, подтверждающие проведение мероприятия. А также на самом приборе должно присутствовать поверочное клеймо. Такие договоры у РФ заключены со странами, входящими в состав СНГ.

Первичная поверка входит в компетенцию органов Государственной метрологической службы (ГМС) и проводится она в специализированных поверочных пунктах. Порядок исследовательских работ регулируется действующим законодательством.

Периодическая

Процедура актуальна для приборов, которые находятся в эксплуатации или на хранении. Для определенного типа устройств утверждена своя периодичность поверки – межповерочный интервал (МПИ). Он определяется в соответствии с нормативными требованиями РМГ 74-2004. Иногда МПИ корректируются. На изменение интервалов может повлиять экономическая целесообразность, а также новые обстоятельства, выявленные в ходе эксплуатации средств измерения. С одной стороны, увеличение межповерочного интервала позволяет уменьшить расходы на осуществление исследований, с другой – возрастает риск применения неисправных устройств с недопустимой погрешностью. Оптимизацией и корректировкой продолжительности МПИ занимаются органы ГМС РФ и Ростехрегулирования.

Контрольное мероприятие чаще всего организуется на территории пользователя СИ или на предприятии, имеющем аккредитацию метрологических органов на осуществление поверки. Для проведения достоверных испытаний могут понадобиться также стационарные пункты поверки или метрологические эталоны. В любом случае законодательство обязывает юридические и физические лица, применяющие измерительные приборы, иметь все необходимое для анализа оборудования.

При организации мероприятия органами ГМС на местах, владельцы устройств должны:

  1. осуществить доставку СИ к месту экспертизы;
  2. предоставить помещение и выделить персонал для помощи в исследовании;
  3. обеспечить надлежащее хранение метрологических эталонов и других приспособлений органов ГМС;
  4. при использовании мобильной лаборатории, обеспечить доступ к необходимым коммуникациям.

Периодическую проверку могут избежать приборы, находящиеся на консервации. Сложносоставные устройства могут проходить частичную поверку по решению главного метролога с соответствующей записью в отчетных документах.

Внеочередная

Процедура необходима при возникновении непредвиденных ситуаций. Это может быть изменение порядка использования прибора, падение, превышение максимально допустимых пределов измерения, критические условия работы.

Внеочередная поверка требуется перед началом применения СИ, которые простаивали на складе в законсервированном виде или долгое время были в пути. Одной из причин для анализа устройства может стать нарушение поверочного клейма или утеря сопроводительной документации. Процедура может назначаться для корректировки МПИ или для контроля итогов периодической поверки.

Инспекционная

Осуществляется полностью или частично в ходе государственного метрологического контроля и надзора. Цель мероприятия — оптимизация МПИ, проверка правильности эксплуатации приборов и действий органов ГМС. Процедура проводится в присутствии представителей проверяемой компании или физического лица. Итоги мероприятия вносятся в специальный протокол и заверяются его участниками.

Экспертная

Основанием для поверки является требование суда, прокуратуры, представителей и органов исполнительной власти. Она организуется органами ГМС при возникновении разногласий относительно исправности и норм эксплуатации различных СИ. В состав обоснования входят описание предмета поверки, причины и цели процедуры. Итогом мероприятия является письменное заключение, составленное в 2-х экземплярах. Первый — выдается заявителю, а второй хранится в архиве органов ГМС.

Нормативная база

Последовательность проведения поверки любого вида установлена законодательными документами, которые регламентируются РМГ 51-2002 “ГСИ. Документы на методики поверки средств измерений. Основные положения”.

Методы исследований могут основываться на действующих нормативных актах или составляться на базе технической документации завода-изготовителя. Для этого в руководство по эксплуатации вносится отдельный раздел.

Обращаем внимание, что любой документ с описанием методологии, норм и правил поверки должен утверждаться компетентными органами – метрологическими институтами (ГНМЦ).

По результатам поверки также разрабатывается документация, объем и содержание которой строго регламентируется действующими стандартами. На СИ указывается поверочные клеймо — знак соответствия нормам закона и метрологическим требованиям РФ. Клеймо гарантирует, что устройство может применяться до проведения очередной периодической поверки. Оно устанавливается определенным способом, чтобы исключить воздействие извне на внутренние датчики и механизмы устройства. Иногда клеймо особого типа наносится на сломанные приборы. Это предотвращает их использование, когда они служат доказательствами в судебных делах. Порядок применения таких знаков установлен ПР 50.2.007-2001 «ГСИ. Поверительные клейма».

Как убедиться в достоверности результатов поверки

Основная цель мероприятия — обеспечить точность измерений. В силу различных обстоятельств итоги поверки имеют определенную погрешность. Ее значение складывается из допустимой погрешности эталонных СИ и самой методики измерения. Из-за погрешности поверочных изменений могут возникнуть следующие ошибки:

  1. СИ с превышающей допустимую погрешностью признаются годными (необнаруженный брак);
  2. исправные устройства считаются негодными (ошибочный брак).

Обе категории являются опасными и могут повлечь отрицательные последствия для пользователей и производителей СИ.

Чтобы сократить процент ошибок, проводится контрольный допуск. С этим значением сравниваются результаты проведенных исследований. Нормативной базой для этого служат МИ 187-86 «ГСИ. Критерии достоверности и параметры методик поверки» и МИ 188-86 «ГСИ. Установление значений параметров методик поверки».

Свидетельство о поверке

Свидетельство о поверкеПо итогам контрольного мероприятия оформляется свидетельство о поверке или наносится поверительное клеймо. На устройстве должно быть предусмотрено место для нанесения этого знака. Если на приборе невозможно указать символ, то он проставляется на выписанном свидетельстве. Также органом может быть выдан протокол поверки СИ.

Подробнее о калибровке

Калибровка и поверка приборов — разные вещи. Обе процедуры хоть и осуществляются по схожим правилам, но все же имеют существенные различия:

  1. калибровка не является обязательной процедурой, проводится производителем или пользователем по собственному желанию;
  2. калибровочные мероприятия носят исследовательский характер, т.к. их результатом является определение действительных значений характеристик;
  3. при калибровке выявляется погрешность устройства только в конкретном диапазоне измерений и при определенных условиях. Они могут не совпадать с утвержденными стандартами проведения поверки.

После калибровки на СИ наносится специальное клеймо, а в паспорт устройства вносится запись, которая доказывает факт осуществления калибровки.

Процедуру рекомендуют проводить для технических средств, применяемых в сложных условиях. Ведь их показатели могут не совпадать с поверочными. Калибровка позволяет увеличить точность измерений на определенном диапазоне допустимых значений.

Если устройство по итогам поверки признано неисправным, оттиск поверительного клейма и свидетельство аннулируются. В этом случае составляется извещение о непригодности по установленной форме. Информация о состоянии оборудования вносится в эксплуатационную документацию.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Погрешность измерений. Классификация

Погрешности средств измерений – отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).
Погрешность результата измерения – отклонение результата измерения от действительного (истинного) значения измеряемой величины.

Инструментальные и методические погрешности.

Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений. Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели.

Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета. Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается. Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены.

Инструментальная погрешность обусловлена несовершенством применяемых средств измерений. Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы.

Статическая и динамическая погрешности.

  • Статическая погрешность измерений – погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей.
    Статическая погрешность средства измерений возникает при измерении с его помощью постоянной величины. Если в паспорте на средства измерений указывают предельные погрешности измерений, определенные в статических условиях, то они не могут характеризовать точность его работы в динамических условиях.
  • Динамическая погрешность измерений – погрешность результата измерений, свойственная условиям динамического измерения. Динамическая погрешность появляется при измерении переменных величин и обусловлена инерционными свойствами средств измерений. Динамической погрешностью средства измерений является разность между погрешностью средсва измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени. При разработке или проектировании средства измерений следует учитывать, что увеличение погрешности измерений и запаздывание появления выходного сигнала связаны с изменением условий.
Читайте также:  Техническое регулирование и метрология надзор

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

Систематическая и случайная погрешности.

Систематическая погрешность измерения – составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины. Систематические погрешности являются в общем случае функцией измеряемой величины, влияющих величин (температуры, влажности, напряжения питания и пр.) и времени. В функции измеряемой величины систематические погрешности входят при поверке и аттестации образцовых приборов.

Причинами возникновения систематических составляющих погрешности измерения являются:

  • отклонение параметров реального средства измерений от расчетных значений, предусмотренных схемой;
  • неуравновешенность некоторых деталей средства измерений относительно их оси вращения, приводящая к дополнительному повороту за счет зазоров, имеющихся в механизме;
  • упругая деформация деталей средства измерений, имеющих малую жесткость, приводящая к дополнительным перемещениям;
  • погрешность градуировки или небольшой сдвиг шкалы;
  • неточность подгонки шунта или добавочного сопротивления, неточность образцовой измерительной катушки сопротивления;
  • неравномерный износ направляющих устройств для базирования измеряемых деталей;
  • износ рабочих поверхностей, деталей средства измерений, с помощью которых осуществляется контакт звеньев механизма;
  • усталостные измерения упругих свойств деталей, а также их естественное старение;
  • неисправности средства измерений.

Случайной погрешностью называют составляющие погрешности измерений, изменяющиеся случайным образом при повторных измерениях одной и той же величины. Случайные погрешности определяются совместным действием ряда причин: внутренними шумами элементов электронных схем, наводками на входные цепи средств измерений, пульсацией постоянного питающего напряжения, дискретностью счета.

Погрешности адекватности и градуировки.

Погрешность градуировки средства измерений – погрешность действительного значения величины, приписанного той или иной отметке шкалы средства измерений в результате градуировки.

Погрешностью адекватности модели называют погрешность при выборе функциональной зависимости. Характерным примером может служить построение линейной зависимости по данным, которые лучше описываются степенным рядом с малыми нелинейными членами.

Погрешность адекватности относится к измерениям для проверки модели. Если зависимость параметра состояния от уровней входного фактора задана при моделировании объекта достаточно точно, то погрешность адекватности оказывается минимальной. Эта погрешность может зависеть от динамического диапазона измерений, например, если однофакторная зависимость задана при моделировании параболой, то в небольшом диапазоне она будет мало отличаться от экспоненциальной зависимости. Если диапазон измерений увеличить, то погрешность адекватности сильно возрастет.

Абсолютная, относительная и приведенная погрешности.

Абсолютная погрешность – алгебраическая разность между номинальным и действительным значениями измеряемой величины. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина, в расчетах её принято обозначать греческой буквой – ∆. На рисунке ниже ∆X и ∆Y – абсолютные погрешности.

Относительная погрешность – отношение абсолютной погрешности к тому значению, которое принимается за истинное. Относительная погрешность является безразмерной величиной, либо измеряется в процентах, в расчетах обозначается буквой – δ.

Приведённая погрешность – погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле

где Xn – нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

– если шкала прибора односторонняя и нижний предел измерений равен нулю (например диапазон измерений 0. 100), то Xn определяется равным верхнему пределу измерений (Xn=100);
– если шкала прибора односторонняя, нижний предел измерений больше нуля, то Xn определяется как разность между максимальным и минимальным значениями диапазона (для прибора с диапазоном измерений 30. 100, Xn=Xmax-Xmin=100-30=70);
– если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора (диапазон измерений -50. +50, Xn=100).

Приведённая погрешность является безразмерной величиной, либо измеряется в процентах.

Аддитивные и мультипликативные погрешности.

  • Аддитивной погрешностью называется погрешность, постоянную в каждой точке шкалы.
  • Мультипликативной погрешностью называется погрешность, линейно возрастающую или убывающую с ростом измеряемой величины.

Различать аддитивные и мультипликативные погрешности легче всего по полосе погрешностей (см.рис.).

Если абсолютная погрешность не зависит от значения измеряемой величины, то полоса определяется аддитивной погрешностью (а). Иногда аддитивную погрешность называют погрешностью нуля.

Если постоянной величиной является относительная погрешность, то полоса погрешностей меняется в пределах диапазона измерений и погрешность называется мультипликативной (б). Ярким примером аддитивной погрешности является погрешность квантования (оцифровки).

Класс точности измерений зависит от вида погрешностей. Рассмотрим класс точности измерений для аддитивной и мультипликативной погрешностей:

– для аддитивной погрешности:
аддитивная погрешность
где Х – верхний предел шкалы, ∆0 – абсолютная аддитивная погрешность.
– для мультипликативной погрешности:
мультипликативная погрешность
порог чувствительности прибора – это условие определяет порог чувствительности прибора (измерений).

47744

Источник

Тема 1.2 Средства, методы и погрешность измерений

При выборе измерительных средств пользуются метрологическими показателями.

К основным показателям относятся: цена деления шкалы, интервал деления шкалы, допускаемая погрешность измерительного средства, пределы измерения и измерительное усилие.

Метрологические характеристики (показатели) – совокупность параметров универсальных измерительных средств, характеризующих точность измерения, область их возможного и наиболее рационального применения.

Основные показатели измерительных средств:

Диапазон измерения (предел измерения прибора) – диапазон размеров, который может быть измерен данными измерительными средствами и для которого нормируется допускаемая погрешность.

Диапазон показаний (пределы показаний по шкале) – область значений измеряемого размера, которая может быть отсчитана по шкале прибора.

Цена деления (шкалы) – разность значений измеряемой величины, соответствующих двум соседним отметкам шкалы. Обычно применяются цены деления из ряда 1; 2; 5. Цену деления не следует принимать за точность прибора. Точность прибора определяется погрешностью и может быть больше или меньше цены деления.

Измерительное усилие – сила, с которой измерительный наконечник прибора воздействует на измеряемую поверхность в направлении измерения.

Погрешность прибора – разность между показаниями прибора и истинным (действительным) значением измеряемой величины.

Погрешность измерения – отклонение значений величины, найденной путем ее измерения, от истинного значения измеряемой величины.

Интервал деления шкалы – это расстояние между двумя соседними отметками шкалы. У большинства измерительных средств интервал деления составляет от 1 до 2,5 мм. Чем больше интервал деления на шкале, тем удобнее отсчет по шкале, хотя это обычно ведет к увеличению ее габаритов.

Измерительное средство и приемы его использования в совокупности образуют метод измерения. По способу получения значений измеряемых величин различают следующие методы измерений.

Метод непосредственной оценки характеризуется определением всей измеряемой величины непосредственно по показаниям измерительного средства, например при измерении детали штангенциркулем значение размера 25,5 мм.

Метод сравнения с мерой, которым определяют отклонение измеряемой величины от известного размера установочной меры или образца. Например, индикатор закрепляют в стойке на плите и устанавливают на нуль по какому-то образцу, а затем измеряют деталь. В этом случае индикатор будет показывать отклонение размера контролируемой детали относительно размера установочного образца.

При оценке годности деталей на производстве иногда пользуются понятием контроля деталей. Под контролем понимается не определение действительного значения размера, а регистрация факта, что размер детали не выходит из пределов допускаемых наибольшего и наименьшего размеров, т.е. из пределов допуска, например при контроле деталей в условиях серийного и массового производства калибрами.

2. Погрешности измерений, их виды и источники

Узнать абсолютное значение измеряемой величины нельзя, так как результаты наших измерений несвободны от погрешностей. Поэтому измерения одной и той же постоянной величины при сохранении одних и тех же внешних условий часто дают неодинаковые результаты, отличающиеся на небольшую величину. Погрешностью измерения Dизм называется отклонение результата измерения Xi от истинного значения Xист/Dизм = XiXист.

Погрешности измерений подразделяют на систематические, случайные и грубые (промахи).

Систематической называется такая погрешность, значение которой при повторных измерениях повторяется или закономерно изменяется. Эти погрешности либо увеличивают результат каждого измерения, либо уменьшают его на одну и ту же величину. Например, если измерительную головку установить на нуль по концевой мере, действительный размер которой меньше номинального на 1 мкм, то при всех измерениях будет погрешность 1 мкм со знаком минус.

Влияние систематических погрешностей можно устранить, если ликвидировать причины их появления или внести поправку в результат измерений, равный величине погрешности, но с обратным знаком, как например это делается, когда известно, что часы отстают на 3 минуты.

Случайной называется погрешность измерения, принимающая при повторных измерениях одной и той же величины и в тех же условиях разные значения по величине и знаку. Случайные погрешности вызываются многочисленными случайными причинами: влиянием неодинаковости измерительного усилия, влиянием зазора между деталями измерительного прибора, погрешностью при отсчете показаний прибора, неточностью установки измеряемого изделия относительно измерительного устройства и др.

Величину и знак возможной случайной погрешности заранее, т.е. до проведения измерения, установить нельзя. Практикой установлено, что распределение случайных погрешностей измерений в большинстве случаев близко к закону нормального распределения. Поэтому допускают, что погрешности, одинаковые по величине, но разные по знаку, равновероятны. Наибольшее число измерений имеют малые погрешности, близкие к нулю (малые по величине погрешности встречаются чаще, чем большие). Ввиду того что одинаково вероятны как плюсовые, так и минусовые случайные погрешности, при достаточно большом количестве повторных измерений среднее арифметическое значение ряда повторных измерений дает наиболее точное значение измеряемой величины (размера).

При многократных измерениях погрешность измерения от случайных ошибок уменьшается в n 0,5 раз, где п – число измерений.

Читайте также:  Работы выполняемые при стандартизации метрология

На основе закона нормального распределения случайных величин можно многократным измерением одних и тех же величин одним и тем же измерительным средством уменьшить влияние случайных ошибок, так как они усредняются и в итоге повышается точность результата измерения. На машиностроительных и приборостроительных заводах многократность измерений как способ повышения надежности и достоверности результата измерений применяют довольно часто.

Проведя несколько повторных измерений одной и той же величины и получив различные результаты, определяют среднее арифметическое значение ряда измерений и принимают его за значение измеряемой величины Хист, т.е. принимают Xист = .

Из результатов многократных измерений можно получить более полную информацию об интересующей нас величине, например о размере опытной детали, если провести еще несложную математическую обработку результатов всех проведенных измерений. Практика показывает, что при современных требованиях к производству точных изделий боязнь небольшой математической обработки результатов измерений является врагом точности. Поэтому ценность результата многократных измерений значительно повышается, если кроме среднего арифметического значения Х будет определена предельная погрешность среднего арифметического в виде s, которая зависит от значения амплитуды рассеяния размеров и количества проведения измерений п.

Предельная погрешность среднего арифметического определяется по формуле

где s – средняя квадратическая погрешность ряда измерений.

Если при многократных измерениях появится погрешность больше 3s, то такую погрешность считают грубой, и результат измерения с такой погрешностью отбрасывают. Причинами грубой погрешности могут быть неправильное снятие показаний по шкале прибора или ошибка при записи результата измерения.

3. Эталоны, поверочная схема и порядок доведения значения эталона до производственных измерений

Эталон – средство измерений, обеспечивающее воспроизведение и хранение единицы физической величины с целью передачи размера единицы образцовым, а от них рабочим средствам измерений и утвержденное в качестве эталона в установленном порядке.

Если эталон воспроизводит единицу с наивысшей в стране точностью, то он называется первичным.

Эталоны, значения которых установлены по первичному эталону, называются вторичными. Они создаются и утверждаются для организации поверочных работ и для обеспечения сохранности и наименьшего износа государственного эталона.

Вторичные эталоны по своему метрологическому назначению делятся на эталоны-копии, эталоны сравнения, эталоны-свидетели и рабочие эталоны.

Эталон-копия предназначен для хранения единицы и передачи ее размера рабочим эталонам.

Эталон сравнения применяется для сличения эталонов, которые по тем или иным причинам не могут быть сличаемы друг с другом.

Эталон-свидетель применяется для проверки сохранности государственного эталона и для замены его в случае порчи или утраты.

Рабочий эталон применяется для хранения единицы и передачи ее размера образцовым средствам измерения высшей точности и при необходимости наиболее точным рабочим мерам и измерительным приборам.

Передача размеров единиц от эталонов рабочим мерам и измерительным приборам осуществляется посредством образцовых средств измерений. Образцовые средства измерений представляют собой меры, измерительные приборы или преобразователи, предназначенные для поверки и градуировки по ним других средств измерений и в установленном порядке утвержденные в качестве образцовых. Образцовые средства измерения должны быть аттестованы, и на них выдаются свидетельства с указанием метрологических параметров и разряда. Все образцовые средства измерений подлежат обязательной периодической поверке в установленные правилами Госстандарта сроки.

Научно-техническую сторону передачи размеров от эталона до изделия обеспечивают поверочные схемы, представляющие собой документ, устанавливающий метрологическое соподчинение эталонов, образцовых средств измерений и порядок передачи размера единицы образцовым и рабочим средствам измерений.

В поверочной схеме указываются наименование утвержденного государственного эталона, вторичных эталонов, образцовых и рабочих средств измерений и методов поверки; приводятся погрешности воспроизведения передачи размера единицы каждому средству измерений, указанному в схеме. В ней наблюдается постепенное, теоретически и практически обоснованное снижение точности от высших звеньев к низшим, но лишь в такой степени, которая обеспечивает требуемую точность рабочих мер и приборов.

Источник

Погрешность измерений

Неотъемлемой частью любого измерения является погрешность измерений. С развитием приборостроения и методик измерений человечество стремиться снизить влияние данного явления на конечный результат измерений. Предлагаю более детально разобраться в вопросе, что же это такое погрешность измерений.

Погрешность измерения – это отклонение результата измерения от истинного значения измеряемой величины. Погрешность измерений представляет собой сумму погрешностей, каждая из которых имеет свою причину.

По форме числового выражения погрешности измерений подразделяются на абсолютные и относительные

Абсолютная погрешность – это погрешность, выраженная в единицах измеряемой величины. Она определяется выражением.

Абсолютная погрешность(1.2), где X — результат измерения; Х — истинное значение этой величины.

Поскольку истинное значение измеряемой величины остается неизвестным, на практике пользуются лишь приближенной оценкой абсолютной погрешности измерения, определяемой выражением

alt=»Абсолютная погрешность» width=»111″ height=»29″/>(1.3), где Хд — действительное значение этой измеряемой величины, которое с погрешностью ее определения принимают за истинное значение.

Относительная погрешность – это отношение абсолютной погрешности измерения к действительному значению измеряемой величины:

Относительная погрешность(1.4)

По закономерности появления погрешности измерения подразделяются на систематические, прогрессирующие, и случайные .

Систематическая погрешность – это погрешность измерения, остающаяся постоянной или закономерно изменяющейся при повторных измерениях одной и той же величины.

Прогрессирующая погрешность – это непредсказуемая погрешность, медленно меняющаяся во времени.

Систематические и прогрессирующие погрешности средств измерений вызываются:

  • первые — погрешностью градуировки шкалы или ее небольшим сдвигом;
  • вторые — старением элементов средства измерения.

Систематическая погрешность остается постоянной или закономерно изменяющейся при многократных измерениях одной и той же величины. Особенность систематической погрешности состоит в том, что она может быть полностью устранена введением поправок. Особенностью прогрессирующих погрешностей является то, что они могут быть скорректированы только в данный момент времени. Они требуют непрерывной коррекции.

Случайная погрешность – это погрешность измерения изменяется случайным образом. При повторных измерениях одной и той же величины. Случайные погрешности можно обнаружить только при многократных измерениях. В отличии от систематических погрешностей случайные нельзя устранить из результатов измерений.

По происхождению различают инструментальные и методические погрешности средств измерений.

Инструментальные погрешности — это погрешности, вызываемые особенностями свойств средств измерений. Они возникают вследствие недостаточно высокого качества элементов средств измерений. К данным погрешностям можно отнести изготовление и сборку элементов средств измерений; погрешности из-за трения в механизме прибора, недостаточной жесткости его элементов и деталей и др. Подчеркнем, что инструментальная погрешность индивидуальна для каждого средства измерений.

Методическая погрешность — это погрешность средства измерения, возникающая из-за несовершенства метода измерения, неточности соотношения, используемого для оценки измеряемой величины.

Погрешности средств измерений.

Абсолютная погрешность меры – это разность между номинальным ее значением и истинным (действительным) значением воспроизводимой ею величины:

Абсолютная погрешность меры(1.5), где Xн – номинальное значение меры; Хд – действительное значение меры

Абсолютная погрешность измерительного прибора – это разность между показанием прибора и истинным (действительным) значением измеряемой величины:

alt=»Абсолютная погрешность измерительного прибора» width=»145″ height=»29″/>(1.6), где Xп – показания прибора; Хд – действительное значение измеряемой величины.

Относительная погрешность меры или измерительного прибора – это отношение абсолютной погрешности меры или измерительного прибора к истинному

(действительному) значению воспроизводимой или измеряемой величины. Относительная погрешность меры или измерительного прибора может быть выражена в ( % ).

Относительная погрешность меры или измерительного прибора(1.7)

Приведенная погрешность измерительного прибора – отношение погрешности измерительного прибора к нормирующему значению. Нормирующие значение XN – это условно принятое значение, равное или верхнему пределу измерений, или диапазону измерений, или длине шкалы. Приведенная погрешность обычно выражается в ( % ).

Приведенная погрешность измерительного прибора(1.8)

Предел допускаемой погрешности средств измерений – наибольшая без учета знака погрешность средства измерений, при которой оно может быть признано и допущено к применению. Данное определение применяют к основной и дополнительной погрешности, а также к вариации показаний. Поскольку свойства средств измерений зависят от внешних условий, их погрешности также зависят от этих условий, поэтому погрешности средств измерений принято делить на основные и дополнительные .

Основная – это погрешность средства измерений, используемого в нормальных условиях, которые обычно определены в нормативно-технических документах на данное средство измерений.

Дополнительная – это изменение погрешности средства измерений вследствии отклонения влияющих величин от нормальных значений.

Погрешности средств измерений подразделяются также на статические и динамические .

Статическая – это погрешность средства измерений, используемого для измерения постоянной величины. Если измеряемая величина является функцией времени, то вследствие инерционности средств измерений возникает составляющая общей погрешности, называется динамической погрешностью средств измерений.

Также существуют систематические и случайные погрешности средств измерений они аналогичны с такими же погрешностями измерений.

Факторы влияющие на погрешность измерений.

Погрешности возникают по разным причинам: это могут быть ошибки экспериментатора или ошибки из-за применения прибора не по назначению и т.д. Существует ряд понятий которые определяют факторы влияющие на погрешность измерений

Вариация показаний прибора – это наибольшая разность показаний полученных при прямом и обратном ходе при одном и том же действительном значении измеряемой величины и неизменных внешних условиях.

Класс точности прибора – это обобщенная характеристика средств измерений (прибора), определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими свойствами средств измерений, влияющих на точность, значение которой устанавливаются на отдельные виды средств измерений.

Классы точности прибора устанавливают при выпуске, градуируя его по образцовому прибору в нормальных условиях.

Прецизионность — показывает, как точно или отчетливо можно произвести отсчет. Она определяется, тем насколько близки друг к другу результаты двух идентичных измерений.

Разрешение прибора — это наименьшее изменение измеряемого значения, на которое прибор будет реагировать.

Диапазон прибора — определяется минимальным и максимальным значением входного сигнала, для которого он предназначен.

Полоса пропускания прибора — это разность между минимальной и максимальной частотой, для которых он предназначен.

Чувствительность прибора — определяется, как отношение выходного сигнала или показания прибора к входному сигналу или измеряемой величине.

Шумы — любой сигнал не несущий полезной информации.

Источник