Гост фильтр для скважины

ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84) — 4. ФИЛЬТРЫ ВОДОЗАБОРНЫХ СКВАЖИН Типы и конструкции фильтров

4.1. При отборе воды из рыхлых и неустойчивых полускальных и скальных пород в скважинах устанавливают фильтры.

Фильтр состоит из водоприемной (рабочей) части, надфильтровых труб и отстойников.

4.2. Длина надфильтровых труб зависит от конструкции скважины. Когда фильтр находится на колонне, то расположенные выше него надфильтровые трубы являются одновременно и эксплуатационной колонной.

В случае, когда эксплуатационная колонна имеет больший диаметр, чем фильтр, последний устанавливается впотай, причем верхняя часть надфильтровой трубы должна находиться выше башмака эксплуатационной колонны труб не менее чем на 3 м при глубине скважины до 50 м и не менее чем, на 5 м при большей глубине скважины.

В плывунных и мелкозернистых песках и при установке фильтров впотай длина надфильтровой трубы должна приниматься не менее 5 м при любой глубине скважины.

Между эксплуатационной колонной и надфильтровой трубой должен быть установлен сальник.

Применяются сальники из различных материалов: резиновые, пеньковые, свинцовые, цементные и др. При установке гравийных фильтров роль сальника выполняет слой гравия высотой 3-5 м, засыпаемого между эксплуатационной колонной и фильтром.

4.3. Длина отстойников в фильтрах, как правило, должна приниматься 0,5-1 и не более 2 м. При этом также отстойники следует устраивать в основном для установки фонарей-центраторов и подъема фильтров с закреплением приспособлений для извлечения в его нижней части.

4.4. Конструкции фильтров должны отвечать следующим требованиям:

1) обладать необходимой механической прочностью и достаточной устойчивостью против коррозии и эрозионного воздействия воды;

2) диаметры фильтровых каркасов должны быть рассчитаны на максимальный пропуск воды со скоростью, не превышающей 1,5- 2 м/с;

3) водопроницаемость фильтров должна быть значительно выше водопроницаемости водоносных пород, в которых они устанавливаются, и для данных гидрогеологических условий должна предусматриваться максимальной с учетом возможного химического и биологического кольматажа при эксплуатации водозаборов.

4) фильтры должны быть доступны для проведения мероприятий по восстановлению производительности скважин химическими реагентами и быть устойчивы к воздействию импульсных (взрыв ТДШ, пневмовзрыв и др.) и комбинированных методов (виброреагентных, пневмореагентных и др.).

4.5. Фильтры состоят из каркаса и водоприемной поверхности. Выпускаются следующие типы каркасов: стержневые; трубчатые с круглыми или щелевыми отверстиями; каркасы из штампованного листа; спирально-проволочные. Каркасы являются основой для водоприемной поверхности, которая устраивается из: проволочной обмотки, штампованного листа, металлических и неметаллических сеток.

В гравийно-галечниковых откложениях, а также в неустойчивых полускальных и скальных породах указанные типы каркасов могут использоваться без дополнительной водоприемной поверхности.

4.6. Наиболее распространенным и эффективным типом фильтров с точки зрения обеспечения длительной и устойчивой эксплуатации скважин являются гравийные фильтры, которые, в свою очередь, подразделяются на засыпные, кожуховые, блочные. Кожуховые и блочные фильтры собираются на поверхности и в готовом виде устанавливаются в скважинах.

Гравийные фильтры могут иметь в качестве поддерживающей основы непосредственно фильтры-каркасы (стержневые, трубчатые и др.) или различные водоприемные поверхности — проволочные обмотки, сетки и т. д.

Основные конструктивные схемы фильтров представлены на рис. 9, и в табл. 15-18 дана их краткая характеристика.

ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения.)

Рис. 9. Основные схемы конструкций фильтров водозаборных скважин

а — на основе стержневых каркасов; б — на основе трубчатых каркасов со щелевой перфорацией; в — на основе трубчатых каркасов с круглой перфорацией; г — гравийные фильтры; 1 — стержневой каркас на опорных кольцах; 2 — трубчатый каркас с круглой перфорацией; 3 — щелевой трубчатый каркас; 4 — проволочная обмотка из нержавеющей стали; 5 — опорная проволочная спираль; 6 — лист, штампованный из нержавеющей стали; 7 — опорные проволочные стержни под проволочную обмотку и лист; 8 — сетка из нержавеющей стали или латуни; 9 сетка подкладная, синтетическая; 10 рыхлая обсыпка; 11 — гравийная обсыпка в кожухе; 12 гравийный блок

Фильтры на каркасах из стержней

Материалы для изготовления

Без дополнительной водоприемной поверхности

Скважность фильтра до 60 %; ширина просвета между стержнями зависит от характера окружающих фильтр рыхлых или трещиноватых скальных пород (известняков, песчаников)

Сталь прутковая Ст3, Ст5, Ст7 диаметрами 12, 14, 16 мм. Патрубки соединительные и кольца опорные из горячекатаных труб. Защита опорных каркасов против коррозии производится кремнийорганической краской ВН-30 или нанесением полиэтилена

С водоприемной поверхностью из проволочной обмотки

Скважность водоприемной поверхности в зависимости от толщины проволоки и просвета составляет 30-60 %. Крепление проволочных спиралей производится на основе эпоксидных смол

Опорные каркасы из стержней обматываются проволокой из нержавеющей стали диаметром 2-4 мм. Крепление проволочной обмотки производится эпоксидной смолой ЭД-5 и ЭД-6

С водоприемной поверхностью из штампованного (просечного) листа

Скважность штампованного (просечного) листа из нержавеющей стали в зависимости от ширины и высоты щели 18-30 %

Штампованный лист из нержавеющей стали (ГОСТ 5282-82) толщиной 0,8-1 мм

С водоприемной поверхностью из сеток

Подбор сетки производится по расчету в зависимости от крупности частиц породы водоносного горизонта

Проволочная обмотка под сетку из нержавеющей стали с шагом 10- 15 мм. Сетка из нержавеющей стали или латуни гладкого плетения (ГОСТ 3187-76*) и квадратного плетения (ГОСТ 6613-86)

Фильтры на спирально-проволочных каркасах

Конструктивные особенное TM

Материалы для изготовления

Без дополнительной водоприемной поверхности

Скважность фильтра до 60 %; ширина просвета между витками проволочного каркаса зависит от характера окружающих фильтр рыхлых или трещиноватых скальных пород (известняков, песчаников)

Сталь прутковая СтЗ, Ст5, Ст7 диаметрами 2, 4, 6, 8 мм. Патрубки соединительные из горячекатаных труб. Защита опорных каркасов против коррозии производится кремнийорганической краской ВН-30

С водоприемной поверхностью из проволочной обмотки

Скважность водоприемной поверхности в зависимости от толщины проволоки и просвета составляет 30-60 %. Крепление проволочных спиралей производится на основе эпоксидных смол

Опорные каркасы обматываются проволокой из нержавеющей стали диаметром 2-4 мм. Крепление проволочной обмотки производится эпоксидной смолой ЭД-5 или ЭД-6

С водоприемной поверхностью из штампованного (просечного) листа

Скважность штампованного (просечного) листа из нержавеющей стали в зависимости от высоты и ширины щели 18-30 %

Штампованный лист из нержавеющей стали толщиной 0,8-1 мм

С водоприемной поверхностью из сеток

Скважность сеток 30-50 %; подбор сетки производится в зависимости от крупности частиц породы водоносного горизонта

Сетка из нержавеющей стали или латуни гладкого плетения (ГОСТ 3187- 76) и квадратного плетения (ГОСТ 6613-86)

Фильтры на трубчатых каркасах

Материалы для изготовления

С круглой или щелевой перфорацией без дополнительной водоприемной поверхности

Скважность каркаса 20-25 %; диаметр отверстий при установке в скальных и галечниковых породах 15-25 мм, а других породах — по расчету. Размер щелей: ширина 10- 30 мм, длина 200-300 мм

Трубы горячекатаные, электросварочные (ГОСТ 10706-76*), полиэтиленовые (ГОСТ 18599-83*); поливинилхлоридные (ТУ МХП 6-05-1573-72); асбестоцементные (ГОСТ 539- 80)

С водоприемной поверхностью из проволочной обмотки

Скважность водоприемной поверхности из проволочной обмотки до 30- 60 %. Зазор между витками проволоки определяется по расчету в зависимости от крупности частиц пород или обсыпки. Намотка проволоки производится по стержням и закрепляется эпоксидной смолой

Читайте также:  Фланец 108 гост 12820 80

Подкладочная проволока из стали СтЗ, Ст5. диаметром 5-10 мм. Проволочная обмотка из нержавеющей стали (ГОСТ 5632-72*) диаметром 2-4 мм. Эпоксидная смола ЭД-6 и ЭД-5.

С водоприемной поверхностью из штампованного стального листа с отверстиями различной конфигурации

Скважность штампованного просечного листа в зависимости от ширины и высоты щели 18-30 %. Между опорным каркасом и листом создается дренажное пространство, отводящее воду внутрь фильтра

Штампованный лист из нержавеющей стали (ГОСТ 5282-82) толщиной 0,8-1 мм. Проволока подкладочная диаметром 5-10 мм, резиновый или хлорвиниловый шнур

С водоприемной поверхностью из сеток

Подбор сеток производится по расчету в зависимости от крупности частиц породы водоносного горизонта

Подкладочные стержни из нержавеющей стали и синтетических сеток. Сетки гладкого (ГОСТ 6613-80) и квадратного (ГОСТ 3187- 76") плетения

Материалы для изготовления

С обсыпкой на забое скважины

Проходные отверстия на фильтрах устраиваются с учетом гранулометрического состава гравийной обсыпки. В зависимости от гранулометрического состава пород и химического состава подземных вод гравийные обсыпки могут быть однослойными или двухслойными, реже трехслойными

Каркасно-стержневые и спирально-проволочные и трубчатые фильтры с водоприемными поверхностями из проволоки, нержавеющей стали и штампованного листа с использованием материалов

Гравийные кожуховые, собираемые на поверхности земли

Кожуховые фильтры устанавливаются в скважинах ограниченного диаметра с минимальной толщиной обсыпки 35-50 мм. Обсыпка не должна содержать пылевато-глинистых частиц

Опорные каркасы те же. Гравийная обсыпка вокруг каркасов удерживается простой стальной сеткой квадратного плетения 2х2 см или 3х3 см. При устройстве кожухов возможно применение сеток квадратного плетения из полистирола, из штампованной пленки из винипласта или из металлического листа толщиной 0,8-1 мм

Блочного типа, собираемые на поверхности земли

Гранулометрический состав гравия в блочных фильтрах подбирается с учетом добавок цемента и водоцементного фактора или других вяжущих полимерных материалов

Каркасы стержневые и трубчатые. Блоки гравийные из пористого бетона

4.7. Рекомендации по применению различных типов фильтров в зависимости от гидрогеологических условий приведены в табл. 19.

Породы водоносных пластов

1. Скальные и полускальные неустойчивые породы, щебенистые и галечниковые отложения с преобладающей крупностью частиц 20- 100 мм (более 50 % по массе)

Фильтры-каркасы (без дополнительной фильтрующей поверхности) стержневые, спирально-проволочные, трубчатые с круглой и щелевой перфорацией, штампованные из стального листа толщиной 4 мм с антикоррозионным покрытием

2. Гравий, гравелистый песок с преобладающей крупностью частиц от 2 до 5 мм (более 50 % по массе)

Фильтры стержневые, спирально-проволочные и трубчатые с водоприемной поверхностью из проволочной обмотки или штампованного листа из нержавеющей стали. Фильтры штампованные из стального листа толщиной 4 мм с антикоррозионным покрытием

3. Пески крупные с преобладающим размером частиц 1-2 мм (более 50 % по массе)

Фильтры стержневые, спирально-проволочные и трубчатые с водоприемной поверхностью из проволочной обмотки, штампованного листа и сеток квадратного плетения из нержавеющей стали. Фильтры штампованные из стального листа толщиной 4 мм с антикоррозионным покрытием

4. Пески среднезернистые с преобладающей крупностью частиц 0,25-0,50 мм (более 50 % по массе)

Фильтры стержневые, спирально-проволочные и трубчатые с водоприемной поверхностью из проволочной обмотки, сеток квадратного плетения, штампованного листа из нержавеющей стали с песчано-гравийной обсыпкой

5. Пески мелкозернистые с преобладающей крупностью частиц 0,1-0,25 мм (более 50 % по массе)

Фильтры стержневые, спирально-проволочные и трубчатые с водоприемной поверхностью из проволочной обмотки, сеток галунного плетения, штампованного листа из нержавеющей стали с однослойной или двухслойной песчано-гравийной обсыпкой

Примечания: 1. При применении фильтров на стержневых каркасах снижается расход металла. Стержневые и спирально-проволочные фильтры обладают лучшими гидравлическими свойствами и обеспечивают более эффективную работу скважин при длительной эксплуатации в водах неустойчивого химического состава, когда возникает опасность зарастания фильтров железистыми и карбонатными отложениями, в результате чего уменьшается производительность скважин. Фильтры на стержневых каркасах рекомендуется применять в скважинах глубиной до 200 м. 2. Фильтры из стальных труб предпочтительнее применять при больших глубинах скважин (более 200м). 3. Фильтры щелевые штампованные из листа толщиной 4 мм с антикоррозионным покрытием могут устанавливаться в скважинах глубиной до 100 м. 4. Применение сеток из латуни на стальных каркасах без антикоррозионной защиты не рекомендуется из-за возможности электрохимической коррозии. 5. Применение сеток и проволоки из простых и оцинкованных сталей в фильтрах, рассчитанных на длительный срок эксплуатации, не допускается. 6. Блочные фильтры, как правило, предназначены для отбора небольшого количества воды. 7. Для антикоррозионной защиты фильтров допустимо применение следующих видов покрытий: полиэтиленовых; эмалевых; этиленовых; резиновых на основе жидких наиритов; перхлорвиниловых; кремнийорганических.

Источник



ГОСТ Р 50553-93 Промышленная чистота. Фильтры и фильтроэлементы. Общие технические требования

Настоящий стандарт распространяется на фильтры и фильтроэлементы, предназначенные для очистки рабочих сред в топливных, масляных, гидравлических и воздушных системах.

Требования пункта 1.2, перечисления 1, 4, 5, 8, 9; пункта 1.3, перечисления 1 — 6, 8, 10, 11, 13; пунктов 1.4 — 1.6 настоящего стандарта являются обязательными, другие требования настоящего стандарта являются рекомендуемыми.

Термины, применяемые в стандарте, — по ГОСТ 16887, ГОСТ 22270, ГОСТ 26070.

1 Технические требования

1.1 Фильтры и фильтроэлементы должны соответствовать требованиям настоящего стандарта и нормативно-технической документации на конкретные виды изделий.

1.2 Конструкция фильтров и фильтроэлементов должна обеспечивать:

1 ) заданный ресурс и (или) срок службы фильтров и фильтроэлементов;

2 ) замену сменных фильтров и фильтроэлементов без демонтажа и смещения соединений трубопроводов;

3 ) удобство монтажа и эксплуатации, предупреждающее загрязнение полости фильтра при замене фильтра и фильтроэлемента;

4 ) прочность и герметичность при давлении рабочей среды, установленной в нормативно-технической документации на конкретные виды фильтров и фильтроэлементов;

5 ) совместимость применяемых материалов и покрытий с рабочей средой;

6 ) наличие устройства для выпуска воздуха из фильтра (при необходимости);

7 ) наличие у фильтра индикатора загрязненности и предохранительного клапана (при необходимости);

8 ) отсутствие внутри фильтра застойных зон (за исключением специально предусмотренных);

9 ) наличие на корпусе фильтра обозначения направления потока рабочей среды.

1.3 В нормативно-технической документации на конкретные виды фильтров и фильтроэлементов должны быть указаны:

1 ) наименование, назначение и область применения;

2 ) условное обозначение;

3 ) тип (наименование, марка) рабочей среды;

4 ) диапазон рабочих температур;

5 ) требования прочности и герметичности фильтра;

6 ) требование герметичности фильтроэлемента;

7 ) требование прочности фильтроэлемента при аксиальной нагрузке (при необходимости);

8 ) требования по совместимости применяемых материалов и покрытий с рабочей средой;

9 ) требование усталостной прочности фильтроэлемента при прохождении потока рабочей среды (при необходимости);

10 ) способы регенерации или утилизации фильтроэлементов;

11 ) климатическое исполнение, категория размещения и условия хранения по ГОСТ 15150 ;

12 ) вид индикатора для фильтров с индикатором загрязненности;

13 ) показатели качества, приведенные в таблице:

Фильтры и фильтроэлементы топливных (1), масляных (2), гидравлических (3), воздушных (4) систем

1 Габаритные и присоединительные размеры

3 Номинальный расход рабочей среды

4 Номинальное давление (разряжение) фильтра

5 Гидравлическая (аэродинамическая) характеристика

6 Номинальный перепад давлений

7 Максимальный перепад давлений на фильтроэлементе

8 Сопротивление потоку от расхода воздуха

9 Разрушающий перепад давлений на фильтроэлементе

10 Абсолютная тонкость фильтрации

11 Номинальная тонкость фильтрации

12 Коэффициент фильтрования

13 Коэффициент отсева (полнота отсева)

14 Коэффициент пропуска пыли

15 Грязеемкость фильтроэлемента (фильтра)

16 Полнота отделения воды

17 Перепад давлений, соответствующий срабатыванию индикатора загрязненности

Читайте также:  Электронный идентификатор гост

18 Степень негерметичности предохранительного клапана

19 Перепад давлений, соответствующий началу открытия предохранительного клапана

20 Ресурс и (или) срок службы

Примечани е — Знак * означает ограниченную применяемость.

1.4 Технические требования, не указанные в 1.2 , 1.3 , устанавливаются в нормативно-технической документации на конкретные виды фильтров и фильтроэлементов по согласованию с заказчиком.

1.5 Требования безопасности

1.5.1 Требования безопасности при эксплуатации фильтров и фильтроэлементов — по ГОСТ 12.3.001 , ГОСТ 12.2.003 , ГОСТ 12.2.040 и нормативно-технической документации на конкретные виды фильтров и фильтроэлементов.

1.6 Требования охраны окружающей среды

1.6.1 Для предотвращения загрязненности окружающей среды все отходы, образующиеся при утилизации фильтров и фильтроэлементов, подлежат обязательному сбору с последующей утилизацией.

1.6.2 Утилизацию фильтров и фильтроэлементов, которые могут оказывать вредное воздействие на окружающую среду, следует проводить в специально отведенных местах с применением средств защиты работающих и выполнением мероприятий, не допускающих выбросов вредных веществ в окружающую среду в виде газов, пыли или жидких отходов с концентрацией, превышающей предельно допустимые нормы.

1 РАЗРАБОТАН Государственным арендным объединением «Вторнефтепродукт»

ВНЕСЕН Техническим Комитетом по стандартизации № 184 «Обеспечение промышленной чистоты»

2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 20.04.93 № 109

Источник

ГОСТ 32504-2013

Стандарт распространяется на фильтры для борьбы с пескопроявлением (далее по тексту — противопесочные фильтры), устанавливаемые в продуктивном пласте скважины и предназначенные для фильтрации добываемого продукта от посторонних включений, предотвращения разрушения призабойной зоны, выноса песка и других механических примесей из нефтяных и газовых скважин, а также для снижения износа насосно-компрессорного оборудования, трубопроводов, сохранения экологии недр. Стандарт устанавливает требования к проектированию, утверждению проектов, функциональной оценке, изготовлению, хранению и транспортированию. Требования стандарта применяют к противопесочным фильтрам с проволочной намоткой, с гравийной набивкой и с металлической сеткой.
1 Область применения
2 Нормативные ссылки
3 Термины и определения
4 Обозначения и сокращения
5 Функциональные требования
6 Технические требования
7 Требования к поставщику/изготовителю
8 Хранение и транспортирование
Приложение А (обязательное) Испытание на давление смятия
Приложение В (обязательное) Испытание на прочность
Приложение С (справочное) Метод испытания гранулами
Приложение D (справочное) Иллюстрации противопесочных фильтров
Приложение Е (справочное) Иллюстрации фильтров с проволочной намоткой
Приложение F (справочное) Иллюстрации фильтров с гравийной набивкой
Приложение G (справочное) Иллюстрации фильтров с металлической сеткой
Приложение Н (справочное) Проверка увеличенного размера зазора проволочной обмотки
Библиография

Источник

СНиП 2.04.02-84: Приложение 2 — Требования к фильтрам водозаборных скважин

1. Типы и конструкции фильтров водозаборных скважин должны приниматься согласно табл. 1.

Породы водоносных пластов

Типы и конструкциифильтров

1. Скальные и полускальные неустойчивые породы, щебенистые и галечниковые отложения с преобладающимразмером частиц 20—100 мм (более 50 % по массе)

Фильтры-каркасы (бездополнительной фильтрующей поверхности) стержневые, трубчатые с круглой ищелевой перфорацией, штампованные из стального листа толщиной 4 мм сантикоррозионным покрытием, спирально-стержневые

2. Гравий, гравелистый песок спреобладающим размером частиц 2—5 мм (более 50 % по массе)

Фильтры стержневые и трубчатыес водоприемной поверхностью из проволочной обмотки или штампованного листа изнержавеющей стали. Фильтры штампованные из стального листа толщиной 4 мм сантикоррозионным покрытием, спирально-стержневые

3. Пески крупные спреобладающим размером частиц 1—2 мм (более 50 % по массе)

4. Пески среднезернистые спреобладающим размером частиц 0,25—0,5 мм (более 50 % по массе)

5. Пески мелкозернистые спреобладающим размером частиц 0,1—0,25 мм (более50 % по массе)

Фильтры стержневые и трубчатые с водоприемной поверхностью из проволочной обмотки, сеток галунногоплетения, штампованного листа из нержавеющей стали с однослойнойили двухслойной песчано-гравийной обсыпкой,спирально-стержневые

2. Фильтры (блочного типа из пористого бетона, гравия на цементной связке) могут применяться для отбора небольших количеств воды при создании в пласте двухслойной обсыпки.

3. При агрессивных водах фильтры надлежит принимать из нержавеющей стали, пластмассы или других материалов, стойких к коррозии и обладающих необходимой прочностью.

4. Размеры отверстий фильтров без устройства гравийной обсыпки надлежит принимать по табл. 2.

С круглой перфорацией

С щелевой перфорацией

Примечания: 1.В табл. 2 КН= d 60 /d1C , где d 10 ; d50;d60 ? размеры частиц, меньше которых в породе водоносного пласта содержитсясоответственно 10, 50 и 60 % (определяется по графику гранулометрическогосостава).

2. Меньшиезначения коэффициентов при d 50 относятся к мелкозернистым породам, большие ? к крупнозернистым.

5. Размерыотверстий фильтров при устройстве гравийной обсыпки должны приниматься равнымисреднему диаметру частиц слоя обсыпки, примыкающего к стенкам фильтра.

6. Скважностьтрубчатых фильтров с круглой или щелевой перфорацией должна быть 20—25 %,фильтров из проволочной обмотки или штампованного стального листа — не более30—60 %.

7. В качествеобсыпки фильтров надлежит применять песок, гравий и песчано-гравийные смеси.

Подбор механическогосостава материалов обсыпок производится по соотношению

где D 50 — диаметрчастиц, меньше которого в обсыпке содержится 50 %.

8. Вмногослойных гравийных фильтрах толщина каждого слоя обсыпки должна приниматьсядля фильтров:

собираемых наповерхности земли, не менее 30 мм;

создаваемых взабое скважины, не менее 50 мм.

9. Подбормеханического состава материала при устройстве двух- и трехслойных гравийныхобсыпок фильтров надлежит производить по соотношению

где D1и D 2 — средние диаметры частиц материала соседних слоев обсыпки.

10. Приподборе гравийного материала фильтров надлежит выдерживать соотношение:

для блочных изпористого бетона или из пористой керамики

где D ср — средний диаметр частиц гравия в блокефильтра.

11. Материал, используемый для фильтров в скважинах,следует обеззараживать.

Источник

Виды фильтров для очистки воды скважин и их конструкция

При обустройстве автономного водоснабжения участка специалисты настоятельно рекомендуют устанавливать фильтр для очистки воды из скважины. Учитывая его стоимость, невольно возникает вопрос в обоснованности такого решения. Помимо этого, многие интересуются в необходимости очистки воды из скважины, при условии ее использования для технических нужд, например, нужен ли фильтр для насоса бассейна. Собранная нами информация поможет найти ответы на эти и другие тематические вопросы.

Обоснование необходимости установки фильтра

Как правило, водозаборные скважины бурят до водоносного горизонта из сыпучих или неустойчивых пород, например песок или галечник. В результате этого в воде могут содержаться частицы породы, так называемая механическая примесь. Если не избавиться от нее, то срок эксплуатации скважины существенно сократится, поскольку произойдет засорение ее ствола.

Стоит также обратить внимание на то, что большинство погружных насосов не приспособлены для работы с водой, в которой содержатся механические примеси. Под ее воздействием снижается ресурс механизма, в результате сокращается его срок службы.

Чтобы избавиться от этих проблем создается фильтровая зона, не допускающая проникновения в скважину частиц породы. Рассмотрим различные виды таких конструкций, принцип работы и возможность их создания своими руками.

Виды фильтров

Несмотря на различное исполнение, каждая конструкция включает в себя три основных элемента:

  • Фильтр.
  • Надфильтровый участок.
  • Отстойник.

Основная задача любой фильтрующей системы не допустить проникновения примесей породы в трубу скважины и при этом не препятствовать водозабору. Помимо этого данные конструкции обеспечивают дополнительную защиту, предохраняющую ствол от обрушения. Наибольшее распространение получили четыре варианта исполнения:

  1. Дырчатая (перфорированная) система очистки.
  2. Щелевая конструкция.
  3. Проволочная конструкция.
  4. Гравийный фильтр.

Рассмотрим подробно каждый из перечисленных видов.

Дырчатая (перфорированная) система очистки

Ввиду простоты конструкции такая система получила широкое распространение. Основной элемент конструкции – обычная перфорированная труба, как правило, из ПНД. В образцах промышленного изготовления в качестве материала может использоваться нержавеющая сталь (нержавейка). Основное преимущество – высокая эффективность при низкой стоимости. Основные элементы такой конструкции представлены ниже.

Читайте также:  Шлицы прямобочные гост pdf

Такое решение может применяться как для абиссинского колодца, так и артезианской скважины, особенно, если последняя не бьет как гейзер, то есть у нее небольшой напор и/или нестабильный слой водоносного известняка.

Как сделать самодельный перфорированный фильтр?

В первую очередь необходимо обзавестись трубой соответствующего диаметра. Идеально для этой цели подходит нефтяной и геологоразведочный сортимент. В крайнем случае, можно использовать пластиковое изделие, при условии, что оно изготовлено из материала, безопасного для человеческого организма.

Также нам понадобится дрель со сверлом соответствующего диаметра. Его необходимо выбрать в зависимости от гранулометрических свойств породы в месте бурения. Подготовив все необходимое можно приступать к процессу изготовления самодельной системы грубой чистки воды. Алгоритм действий следующий:

  1. Отмеряем длину под отстойник. Для этого кладем трубу горизонтально и наносим соответствующую разметку. Обратим внимание, что на следующие моменты:
  • Участок, в котором будут сверлиться отверстия должен быть не менее четверти длины трубы.
  • Перфорированная зона должна располагаться таким образом, чтобы при установке фильтра она приходилась на место забора воды (водяной слой).
  1. Начинаем высверливать отверстия, их нижний ряд должен располагаться на расстоянии не меньше метра от края. Расположения отверстий большой роли не играет, но будет правильно, если разместить их в шахматном порядке. Так лучше контролировать расстояние между ними. Оно должно быть в пределах 10,0-20,0 мм.

Отверстия можно делать прямыми, но в идеале сверло нужно направлять таким образом, чтобы образовывался угол 40°-60°, как показано на рисунке

  1. Завершив процесс перфорации, необходимо очистить трубу, проще всего это сделать, если установить ее вертикально. После этого производим чистку отверстий и образовавшихся на них заусенец.
  2. На завершающем этапе нижний край трубы устанавливаем пробку. После этого фильтр готов к эксплуатации.

Обратим внимание, что можно несколько увеличить эффективность конструкции, закрыв зону перфорации сеткой или органзой.

Щелевая конструкция

Основное отличие от предыдущей конструкции заключается в том, что забор воды производится не через дыры, а специально прорезанные щели. Это положительно отражается на пропускной способности. Но у данного вида есть и существенный недостаток, который выражается в потери прочности конструкции. Чтобы несколько уменьшить этот фактор, в перфорированной зоне оставляют несколько цельных участков, они играют роль поясов жесткости.

Изготовить такой тип конструкции несколько сложнее, чем дырчатую систему. Прорезать вручную равномерные щели практически невозможно, для этого потребуется специальное оборудование, в идеале фрезерный станок.

Алгоритм изготовления приводить нет смысла, поскольку он особо не отличается от предыдущего варианта. Что касается размеров щелей, то они зависят от породы. Их ширина, как правило, от 3,0 до 6,0 мм, длина – 25,0-80,0 мм. Порядок расположения может быть поясным или шахматным. После того, как щели прорезаны, их необходимо почистить. Далее не забываем удалить мусор из трубы, как это делать было описано выше.

Поскольку такой тип фильтрующей системы, в основном, применяется для скважин на песок, то требуется установка дополнительного внешнего фильтра. Для этой цели отлично подходит сетка с галунным или квадратным плетением. Ширина ячеек может быть от 0,1 до 1,0 мм, она подбирается в зависимости от структуры песка.

Проволочные конструкции

Данная конструкция состоит из каркаса, на который наматывается специальная проволока особого профиля. Эффективность такого решения значительно выше, чем у двух предыдущих вариантов. Помимо этого проволочная система отличается высокой надежностью и продолжительным сроком службы. Отрицательная сторона – высокая стоимость.

Самостоятельно изготовить такую конструкцию для скважины загородного дома или дачи, практически нереально даже при наличии необходимых материалов. Для процесса понадобится специальное оборудование и много свободного времени.

Гравийный фильтр

По сути это не отдельный вариант очистной системы, а модернизация щелевой конструкции. Принцип устройства такого сооружения представлен на рисунке ниже.

Данный способ очистки отлично зарекомендовал себя на породах с песком мелких фракций и большим вкраплением глины. Технология обустройства несложная: бурится скважин с большим диаметром, затем производится обсыпка гравием (от 50-60 мм и более). Важно, чтобы его фракции были примерно одного размера. В идеале гравий должен пройти калибровку. Размеры его частиц должны быть на порядок меньше фракций породы.

Что делать, если произошла кольматация фильтров?

Если забился фильтр грубой очистки, то дальнейшая эксплуатация скважины невозможна. Произвести замену фильтрующей системы или ее прочистку (промывку) не представляется возможным. Следовательно, придется заново вести буровые работы. Основной признак кольматации – снижение дебита скважины.

Кратко о фильтрах тонкой очистки

Системы грубой очистки воды не являются панацей, с их помощью можно избавиться только от содержания фракций породы. В то время как вода может содержать в себе сероводород, железо, соли извести, марганец и другие минеральные соединения. В этом случае потребуется монтаж специализированного очистного оборудования. Но с ним не все так просто.

Эффективную очистку от содержания минеральных примесей, а также нитратов (в случае если водяной горизонт близко к поверхности) можно только после проведения анализа состава воды в специализированной лаборатории. Самому произвести необходимые расчеты и составить схему очистки нереально.

Например, в если воде содержится железо, при его соединении с воздухом пойдет процесс окисления, в результате питьевая вода приобретет характерный привкус ржавчины и желтоватый оттенок. Чтобы избавиться от этого потребуется ставить фильтр с эффектом обезжелезивания. Но это только частично исправит ситуацию, в такой воде обычно присуща повышенная жесткость, следовательно, понадобится также угольный фильтр. Но как быть с неочевидными признаками, например, солевой состав воды может отличаться от нормы, но быть не ощутимым на вкус. Как видите, без точного анализа нельзя обойтись.

Допустим, вы отправили пробу в лабораторию и получили документ с указанием содержания примесей в питьевой воде. Далее необходимо подобрать очистительную систему. На сайтах их производителей можно найти калькулятор, который по составу воды предложит наиболее оптимальную систему.

Мы рекомендуем обратить внимание на такие бренды, как Фибос, Intex, Осмос и Аквафор. У последнего есть линейка магистральных и бытовых проточных фильтров, картриджного типа.

Преимущество данных моделей заключается в том, что можно изменят параметры очистной системы, не производя ее глобальной замены. Объясним на примере, как это работает. Известно, что состав воды даже артезианских источников может меняться. Именно поэтому рекомендуется раз в полгода делать анализ ее состава.

Допустим, у нас установлен водяной фильтр Аквафор, в котором имеются колонки картриджи для удаления сероводорода, солей марганца и снижения жесткости. Анализ очередной пробы показал, что жесткость пришла в норму, а содержание марганца повысилось. Для исправления ситуации достаточно заменить картриджи. Ставим колбу фильтрующую марганец, и снимаем картридж понижающий жесткость, поскольку начался обратный процесс (вода стала менее жесткой).

Богатый ассортимент картриджей позволяет подобрать любое их сочетание, а простой способ изменения конфигурации делает этот процесс необременительным.

Источник