Анализ источников стандартизация сетей структура стандарта ieee 802 x



Общая характеристика протоколов локальных сетей. Структура стандартов 802.Х.

При организации взаимодействия узлов в локальных сетях основная роль отводится протоколу канального уровня. Однако для того, чтобы канальный уровень мог справиться с этой задачей, структура локальных сетей должна быть вполне определенной, так, например, наиболее популярный протокол канального уровня — Ethernet — рассчитан на параллельное подключение всех узлов сети к общей для них шине — отрезку коаксиального кабеля или иерархической древовидной структуре сегментов, образованных повторителями. Протокол Token Ring также рассчитан на вполне определенную конфигурацию — соединение компьютеров в виде логического кольца.

Для упрощения и удешевления аппаратных и программных решений разработчики первых локальных сетей остановились на совместном использовании кабелей всеми компьютерами сети в режиме разделения времени (TDM). Наиболее явным образом режим совместного использования кабеля проявляется в классических сетях Ethernet, где коаксиальный кабель физически представляет собой неделимый отрезок кабеля, общий для всех узлов сети. Но и в сетях Token Ring и FDDI, где каждая соседняя пара компьютеров соединена, казалось бы, своими индивидуальными отрезками кабеля с концентратором, эти отрезки не могут использоваться компьютерами, которые непосредственно к ним подключены, в произвольный момент времени. Эти отрезки образуют логическое кольцо, доступ к которому как к единому целому может быть получен только по вполне определенному алгоритму, в котором участвуют все компьютеры сети. Использование кольца как общего разделяемого ресурса упрощает алгоритмы передачи по нему кадров, так как в каждый конкретный момент времени кольцо занято только одним компьютером.

При использовании коммутаторов у традиционных технологий появился новый режим работы — полнодуплексный (full-duplex). В разделяемом сегменте станции всегда работают в полудуплексном режиме (half-duplex), так как в каждый момент времени сетевой адаптер станции либо передает свои данные, либо принимает чужие, но никогда не делает это одновременно.

В полнодуплексном режиме сетевой адаптер может одновременно передавать свои данные в сеть и принимать из сети чужие данные. Такой режим несложно обеспечивается при прямом соединение с мостом/коммутатором или маршрутизатором, так как вход и выход каждого порта такого устройства работают независимо друг от друга, каждый со своим буфером кадров.

Структура стандартов IEEE 802.x.В 1980 году в институте IEEE был организован комитет 802 по стандартизации локальных сетей, в результате работы которого было принято семейство стандартов IEEE 802.x, которые содержат рекомендации по проектированию нижних уровней локальных сетей. Эти стандарты были созданы на основе очень распространенных фирменных стандартов сетей Ethernet, ArcNet и Token Ring. Для сетей, работающих на оптоволокне, американским институтом по стандартизации ANSI был разработан стандарт FDDI, обеспечивающий скорость передачи данных 100 Мб/с.

Стандарты семейства IEEE 802.x охватывают только два нижних уровня семи-уровневой модели OSI — физический и канальный.

Специфика локальных сетей также нашла свое отражение в разделении канального уровня на два подуровня, которые часто называют также уровнями. Канальный уровень (Data Link Layer) делится в локальных сетях на два подуровня:

  • логической передачи данных (Logical Link Control, LLC);
  • управления доступом к среде (Media Access Control, MAC).

Уровень MAC появился из-за существования в локальных сетях разделяемой среды передачи данных. Именно этот уровень обеспечивает корректное совместное использование общей среды, предоставляя ее в соответствии с определенным алгоритмом в распоряжение той или иной станции сети. После того как доступ к среде получен, ею может пользоваться более высокий уровень — уровень LLC, организующий передачу логических единиц данных, кадров информации, с различным уровнем качества транспортных услуг. В современных локальных сетях получили распространение несколько протоколов уровня MAC, реализующих различные алгоритмы доступа к разделяемой среде. Эти протоколы полностью определяют специфику таких технологий, как Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, 100VG-AnyLAN.

Уровень LLC отвечает за передачу кадров данных между узлами с различной степенью надежности, а также реализует функции интерфейса с прилегающим к нему сетевым уровнем. Именно через уровень LLC сетевой протокол запрашивает у канального уровня нужную ему транспортную операцию с нужным качеством. На уровне LLC существует несколько режимов работы, отличающихся наличием или отсутствием на этом уровне процедур восстановления кадров в случае их потери или искажения, то есть отличающихся качеством транспортных услуг этого уровня.

Источник

Структура стандартов IEEE 802.x

Комитет 802 института IEEE был создан в 1980 году с целью выработки стандартов для локальных сетей. Результаты работы этого комитета (группа стандартов IEEE 802.x) легли в основу международных стандартов от ISO 8802‑1 до ISO 8802‑5. Комитет 802 не столько разрабатывал новые протоколы, сколько выделял в широко распространенных фирменных технологиях общие принципы, подходы и функции, и формулировал открытые стандарты на их основе. Группа стандартов IEEE 802.x охватывает два нижних уровня модели ВОС – физического и канального уровня. Канальный уровень с точки зрения стандартов 802.x состоит из двух подуровней:

— логической передачи данных (Logical Link Control, LLC)

— управления доступом к среде передачи (Media Access Control).

Подуровень LLC предоставляет стандартный интерфейс с сетевым уровнем, независимый от сетевой технологии. Протоколы сетевого уровня, когда им нужно передать кадр данных, обращаются именно к подуровню LLC.

Подуровень MAC обеспечивает совместное использование среды передачи, выполняя соответствующие алгоритмы доступа. Специфические особенности технологий локальных сетей – Ethernet, Token Ring, FDDI, Fast Ethernet, 100VG-AnyLAN и др. – реализуются именно на подуровне MAC.

Часть стандартов группы 802 описывает отдельные технологии, а часть содержит стандарты, общие для разных технологий.

Подгруппа 802.1 содержит общие определения локальных сетей, связь модели IEEE 802 с моделью OSI, правила взаимодействия различных технологий.

К ней относятся:

— 802.1d – логика работы моста/коммутатора; алгоритм покрывающего дерева.

— 802.1h – логика работы транслирующего моста (связывающего сети разных технологий).

— 802.1p – дополнения к логике мостов для работы с трафиком разных приоритетов и выполнения динамической фильтрации группового вещания.

— 802.1q – построение виртуальных локальных сетей (Virtual LAN, VLAN) с помощью мостов/коммутаторов.

Стандарт 802.2 описывает работу подуровня LLC.

Подгруппа стандартов 802.3 описывает работу подуровня MAC и физического уровня с методом доступа CSMA/CD. Собственно стандарт 802.3 определяет технологию Ethernet (10 Мбит/c), 802.3u – Fast Ethernet (100 Мбит/c), 802.3z и 802.3ab – Gigabit Ethernet (1 Гбит/с). Стандарт 802.3x определяет правила управления потоком для дуплексного режима.Стандарт 802.4 описывает работу подуровня MAC и физического уровня технологий типа маркерная шина (Token Ring, протокол MAP (Manufacturing Automation Protocol) для связи устройств промышленной автоматики).

Стандарт 802.5 описывает работу подуровня MAC и физического уровня технологий типа маркерного кольца (Token Ring).

Стандарт 802.6 описывает городские сети (Metropolitan Area Network, MAN).

Стандарт 802.7 описывает принципы широкополосной передачи.

Стандарт 802.8 описывает принципы построения сетей на основе волоконно-оптических технологий.

Стандарт 802.9 содержит совместимые с ISDN спецификации совместной передачи голоса и данных.

Стандарт 802.10 описывает принципы сетевой безопасности.

Стандарт 802.11 описывает беспроводные технологии передачи данных.

Стандарт 802.12 определяет технологию передачи с методом доступа по требованию с приоритетами (100VG-AnyLAN).

32 Метод доступа CSMA/CD

Метод доступа CSMA/CD определяет, во-первых, каким образом станция определяет момент, когда она может передать кадр, во-вторых – каким образом должны вести себя станции в случае одновременного начала передачи кадров двумя или более узлами.

Каждая станция постоянно прослушивает сеть. Если в сети присутствует сигнал несущей частоты, значит, другая станция передает свой кадр. Для того, чтобы иметь право передать кадр, станция должна дождаться “тишины” (отсутствия несущей), выждать технологическую паузу (9.6 мкс), и, если за время паузы сигнал несущей не появился, начать передачу.

Все станции, прослушивая сеть, распознают передаваемый кадр, и та из них, чей адрес записан в поле получателя, принимает кадр полностью и передает его протоколам верхних уровней. Остальные станции “чужие” кадры должны игнорировать.

Возможна ситуация, когда две станции одновременно начинают передачу кадров. Такая ситуация называется коллизией (collision). Наступление коллизии передающая станция может определить по отличию передаваемых и принимаемых ею данных (во время передачи кадра станция продолжает прослушивать сеть). Обнаружившая коллизию станция должна прекратить передачу кадра, передать в сеть специальный сигнал затора (jam), состоящий из 32 бит, и выдерживает паузу случайной длительности (определяемой по специальному алгоритму). После этого она может опять попытаться передать свой кадр (естественно, дождавшись “тишины” и выждав технологическую паузу).

Читайте также:  Виды и сущность методов стандартизации

Интервал времени до повторной попытки доступа после коллизии определяется как случайное число интервалов отсрочки (один интервал отсрочки равен 512 битовым интервалам, т.е. 51,2 мкс). Количество интервалов отсрочки определяется как случайное целое число, равномерно распределенное в интервале 0..2 n (1<=n<=10) или 0..2 10 (10<n<=16). Здесь n – номер попытки передачи кадра. Если 16 попыток заканчиваются неудачно (порождая коллизии), подуровень MAC отбрасывает кадр и передает верхним уровням сообщение об ошибке.

Основным принципиальным ограничением на параметры сети (диаметр сети, размер пакета и др.) является необходимость надежного распознавания коллизий. Станция, передающая пакет, может определить наступление коллизии только во время передачи кадра. Значит, максимальный диаметр сети должен быть таков, чтобы за время передачи кадра минимальной длины первый его бит успел достичь самой дальней станции и вернуться (возможно, искаженным) обратно. Если искаженный первый бит вернется уже после окончания передачи кадра, передававшая станция не сможет распознать коллизию. Если Tmin – время передачи кадра минимальной длины, а RTT – время двойного оборота(round trip time, время, за которое сигнал проходит дважды между наиболее удаленными станциями), то должно выполняться соотношение: Tmin ≥ RTT. Ограничения на размер сети в Ethernet параметры подобраны таким образом, чтобы коллизии

31Ethernet. 10Мбит/с.

Здесь будут рассмотрены четыре топологии Ethernet со скоростью передачи 10 Мбит/с:

  • 10BaseT (Витая пара);
  • 10Base2 (Тонкий коаксиал);
  • 10Base5 (Толстый коаксиал);
  • 10BaseFL (Оптоволокно).

ВаsеТ

В 1990 году IEEE опубликовал спецификацию 802.3 для построения сети Ethernet на основе витой пары. l0BaseT (10 — скорость передачи 10 Мбит/с, Base — узкополосная, Т — витая пара) — сеть Ethernet, которая для соединения компьютеров обычно использует неэкранированную витую пару (UTP). Тем не менее и экранированная витая пара (STP) также может применяться в топологии lOBaseT без изменения каких-либо ее параметров.

Большинство сетей этого типа строятся в виде звезды, но по системе передачи сигналов представляют собой шину, как и другие конфигурации Ethernet. Обычно концентратор сети lOBaseT выступает как многопортовый (multiport) репитер и часто располагается в распределительной стойке здания. Каждый компьютер подключается к другому концу кабеля, соединенного с концентратором, и использует две пары проводов: одну — для приема, другую — для передачи.

Максимальная длина сегмента l0BaseT — 100 м (328 футов). Минимальная длина кабеля — 2,5 м (около 8 футов). Сеть l0BaseT может обслуживать до 1024 компьютеров.

Кабель Категоря 3,4 или 5 UTP
Соединители RJ-45 на концах кабеля
Расстояние между сегментами 100м максимум по спецификации IEEE 802.3, но как показала практика, это не предел
Магистраль для соединения маршрутизаторов По спецификации коаксиальный или оптоволоконный кабель для объединения в крупные ЛВС (на практике всё происходит совсем по другому :))
Общее число компьютеров в ЛВС без применения специальных компонентов, увеличивающих это количество По спецификации — до 1024

Base2

В соответствии со спецификацией IEEE 802.3 эта топология называется 10Base2 [10 -скорость передачи 10 Мбит/с, Base — узкополосная передача, 2 — передача на расстояние, примерно в два раза превышающее 100 м (фактическое расстояние 185 м)].

Сеть такого типа ориентирована на тонкий коаксиальный кабель, или тонкий Ethernet, с максимальной длиной сегмента 185 м. Минимальная длина кабеля 0,5 м (20 дюймов). Кроме того, существует ограничение на максимальное количество компьютеров, которое может быть размещено на 185-метровом сегменте кабеля, — 30 штук.

Компоненты кабеля «тонкий Ethernet»:

  • BNC баррел-коннекторы;
  • BNC Т-коннекторы;
  • BNC-терминаторы.

Сети на тонком Ethernet обычно имеют топологию «шина». Стандарты IEEE для тонкого Ethernet не предусматривают использования кабеля трансивера между Т-кон-нектором и компьютером. Вместо этого Т-коннектор располагают непосредственно на плате сетевого адаптера.

BNC баррел-коннектор, соединяя сегменты кабеля, позволяет увеличить его общую длину. Например, Вам нужен кабель длиной 30 м, а у Вас есть сегменты тонкого кабеля по 20 и 5 м. Соедините двумя баррел-коннекторами эти сегменты, чтобы получить кабель нужной длины. Однако использование баррел-коннекторов желательно свести к минимуму, поскольку они ухудшают качество сигнала.

Сеть на тонком Ethernet — экономичный способ реализации сетей для небольших отделений и рабочих групп. Используемый в такого типа сетях кабель:

  • относительно недорогой;
  • прост в установке;
  • легко конфигурируется.

По спецификации IEEE 802.3, сеть на тонком Ethernet может поддерживать до 30 узлов (компьютеров и репитеров) на один кабельный сегмент.

Максимальнальная длина сегмента 185 м (607 футов)
Соединение с сетевой картой BNC T-коннектор
Количество магистральных сегментов и репитеров 5 сегментов на 4-х репитерах
Максимальное количество компьютеров на сегмент По спецификации — 30
Количество сегментов, к которым могут быть подключены компьютеры Три сермента из пяти (один репитер используется только для усиления сигнала)
Максимальнальная общая длина сети 925 м (3035 футов)
Общее число компьютеров в ЛВС без применения специальных компонентов, увеличивающих это количество По спецификации — до 1024

Сейчас сети на коаксиальных кабелях морально устарели.

Base5

В соответствии со спецификацией IEEE эта топология называется 10Base5 [10 — скорость передачи 10 Мбит/с, Base — узкополосная передача, 5 — сегменты по 500 м (5 раз по 100 м)]. Известно и другое ее название — стандартный Ethernet.

Сети на толстом коаксиальном кабеле (толстый Ethernet) обычно используют топологию «шина». Толстый Ethernet может поддерживать до 100 узлов (рабочих станций, репитеров и т.д.) на магистральный сегмент. Магистраль, или магистральный сегмент, — главный кабель, к которому присоединяются трансиверы с подключенными к ним рабочими станциями и репитерами. Сегмент толстого Ethernet может иметь длину 500 м при общей длине сети 2500 м (8200 футов).

Расстояния и допуски для толстого Ethernet больше, чем для тонкого Ethernet.

Компоненты кабельной системы:

  • Трансиверы.
    Трансиверы, обеспечивая связь между компьютером и главным кабелем ЛВС, совмещены с «зубом вампира»(это коннектор такой), соединенным с кабелем.
  • Кабели трансиверов.
    Кабель трансивера (ответвляющийся кабель) соединяет трансивер с платой сетевого адаптера.
  • DIX-коннектор, или AUI-коннектор. Этот коннектор расположен на кабеле трансивера.
  • Коннекторы N-серии (в том числе баррел-коннекторы) и терминаторы М-серии.

Компоненты толстого Ethernet работают так же, как компоненты тонкого Ethernet.

Максимальнальная длина сегмента 500 м (1650 футов)
Соединение с сетевой картой BNC T-коннектор
Количество магистральных сегментов и репитеров 5 сегментов на 4-х репитерах
Количество сегментов, к которым могут быть подключены компьютеры Три сермента из пяти (один репитер используется только для усиления сигнала)
Максимальнальная общая длина сети 2500 м (8200 футов)
Общее число компьютеров на сегмент По спецификации — до 100

Также возможно комбинирование толстого и тонкого Ethernet. Толстый хорошо подходит в качестве магистрали, а для ответвления применяют тонкий кабель.

Сейчас сети на коаксиальных кабелях морально устарели.

BaseFL

10BaseFL (10 — скорость передачи 10 Мбит/с, Base — узкополосная передача, FL — оптоволоконный кабель) представляет собой сеть Ethernet, в которой компьютеры и репитеры соединены оптоволоконным кабелем.

Основная причина причина популярности 10BaseFL — возможность прокладывать кабель между репитерами на большие расстояния (например между зданиями). Максимальная длина сегмента 10BaseFL — 2000м.

Технология Fast Ethernet

Классический 10-мегабитный Ethernet устраивал большинство пользователей на протяжении около 15 лет. Однако в начале 90-х годов начала ощущаться его недостаточная пропускная способность.

В 1992 году группа производителей сетевого оборудования, включая таких лидеров технологии Ethernet, как SynOptics, 3Com и ряд других, образовали некоммерческое объединение Fast Ethernet Alliance для разработки стандарта новой технологии, которая должна была в максимально возможной степени сохранить особенности технологии Ethernet.

Комитет IEEE 802.3 принял спецификацию Fast Ethernet в качестве стандарта 802.3u, который не является самостоятельным стандартом, а представляет собой дополнение к существующему стандарту 802.3 в виде глав с 21 по 30.

Все отличия технологии Fast Ethernet от Ethernet сосредоточены на физическом уровне (рис. 4.4). Уровни MAC и LLC в Fast Ethernet остались абсолютно теми же, и их описывают прежние главы стандартов 802.3 и 802.2.

Более сложная структура физического уровня технологии Fast Ethernet вызвана тем, что в ней используются три варианта кабельных систем:

· волоконно-оптический многомодовый кабель, используются два волокна;

· витая пара категории 5, используются две пары;

Читайте также:  Орган стандартизации франции

· витая пара категории 3, используются четыре пары.

Сети Fast Ethernet всегда имеют иерархическую древовидную структуру, построенную на концентраторах. Основным отличием конфигураций сетей Fast Ethernet является сокращение диаметра сети примерно до 200 м, что объясняется уменьшением времени передачи кадра минимальной длины в 10 раз за счет увеличения скорости передачи в 10 раз по сравнению с 10-мегабитным Ethernet.

Это обстоятельство не препятствует построению крупных сетей на технологии Fast Ethernet. Дело в том, что середина 90-х годов отмечена не только широким распространением недорогих высокоскоростных технологий, но и бурным развитием локальных сетей на основе коммутаторов. При использовании коммутаторов протокол Fast Ethernet может работать в полнодуплексном режиме, в котором нет ограничений на общую длину сети, а остаются только ограничения на длину физических сегментов, соединяющих соседние устройства (адаптер — коммутатор или коммутатор — коммутатор).

Рис. 4.4 Отличия технологии Fast Ethernet

По сравнению с вариантами физической реализации Ethernet (а их насчитывается шесть), в Fast Ethernet отличия каждого варианта от других глубже — меняется как количество проводников, так и методы кодирования.

Официальный стандарт 802.3и установил три различных спецификации для физического уровня Fast Ethernet и дал им следующие названия:

— 100Base-TX для двухпарного кабеля на неэкранированной витой паре UTP категории 5 или экранированной витой паре STP Type 1;

— 100Base-T4 для четырехпарного кабеля на неэкранированной витой паре UTP категории 3, 4 или 5;

— 100Base-FX для многомодового оптоволоконного кабеля, используются два волокна.

Для всех трех стандартов справедливы следующие утверждения и характеристики.

— Форматы кадров технологии Fast Ethernet не отличаются от форматов кадров технологий 10-мегабитного Ethernet.

— Межкадровый интервал (IPG) равен 0,96 мкс, а битовый интервал равен 10 нс. Все временные параметры алгоритма доступа, измеренные в битовых интервалах, остались прежними, поэтому изменения в разделы стандарта, касающиеся уровня MAC, не вносились.

— Признаком свободного состояния среды является передача по ней символа Idle соответствующего избыточного кода (а не отсутствие сигналов, как в стандартах Ethernet 10 Мбит/с).

Физический уровень включает три элемента:

— уровень согласования (reconciliation sublayer);

— независимый от среды интерфейс (Media Independent Interface, MII);

— устройство физического уровня (Physical layer device, PHY).

Уровень согласования нужен для того, чтобы уровень MAC, рассчитанный на интерфейс AUI, смог работать с физическим уровнем через интерфейс МII.

Устройство физического уровня (PHY) состоит, в свою очередь, из нескольких подуровней (см. рис. 4.4):

— подуровня логического кодирование данных, преобразующего поступающие от уровня MAC байты в символы кода 4В/5В или 8В/6Т (оба кода используются в технологии Fast Ethernet);

— подуровней физического присоединения и подуровня зависимости от физической среды (PMD), которые обеспечивают формирование сигналов в соответствии с методом физического кодирования, например NRZI или MLT-3;

— подуровня автопереговоров, который позволяет двум взаимодействующим портам автоматически выбрать наиболее эффективный режим работы, например, полудуплексный или полнодуплексный (этот подуровень является факультативным).

Интерфейс МII поддерживает независимый от физической среды способ обмена данными между подуровнем MAC и подуровнем PHY.

Источник

3.1.2. Структура стандартов ieee 802.X

В 1980 году в институте IEEE был организован комитет 802 по стандартизации локальных сетей, в результате работы которого было принято семейство стандартов IEEE 802-х, которые содержат рекомендации по проектированию нижних уровней локальных сетей. Позже результаты работы этого комитета легли в основу комплекса международных стандартов ISO 8802-1. 5. Эти стандарты были созданы на основе очень распространенных фирменных стандартов сетей Ethernet, ArcNet и Token Ring.

Помимо IEEE в работе по стандартизации протоколов локальных сетей принимали участие и другие организации. Так, для сетей, работающих на оптоволокне, американским институтом по стандартизации ANSI был разработан стандарт FDDI, обеспечивающий скорость передачи данных 100 Мб/с. Работы по стандартизации протоколов ведутся также ассоциацией ЕСМА, которой приняты стандарты ЕСМА-80, 81, 82 для локальной сети типа Ethernet и впоследствии стандарты ЕСМА-89,90 по методу передачи маркера.

Стандарты семейства IEEE 802.X охватывают только два нижних уровня семи-уровневой модели OSI — физический и канальный. Это связано с тем, что именно эти уровни в наибольшей степени отражают специфику локальных сетей. Старшие же уровни, начиная с сетевого, в значительной степени имеют общие черты как для локальных, так и для глобальных сетей.

Специфика локальных сетей также нашла свое отражение в разделении канального уровня на два подуровня, которые часто называют также уровнями. Канальный уровень (Data Link Layer) делится в локальных сетях на два подуровня:

логической передачи данных (Logical Link Control, LLC);

управления доступом к среде (Media Access Control, MAC).

Уровень MAC появился из-за существования в локальных сетях разделяемой среды передачи данных. Именно этот уровень обеспечивает корректное совместное использование общей среды, предоставляя ее в соответствии с определенным алгоритмом в распоряжение той или иной станции сети. После того как доступ к среде получен, ею может пользоваться более высокий уровень — уровень LLC, организующий передачу логических единиц данных, кадров информации, с различным уровнем качества транспортных услуг. В современных локальных сетях получили распространение несколько протоколов уровня MAC, реализующих различные алгоритмы доступа к разделяемой среде. Эти протоколы полностью определяют специфику таких технологий, как Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, l00VG-AnyLAN.

Уровень LLC отвечает за передачу кадров данных между узлами с различной степенью надежности, а также реализует функции интерфейса с прилегающим к нему сетевым уровнем. Именно через уровень LLC сетевой протокол запрашивает у канального уровня нужную ему транспортную операцию с нужным качеством. На уровне LLC существует несколько режимов работы, отличающихся наличием или отсутствием на этом уровне процедур восстановления кадров в случае их потери или искажения, то есть отличающихся качеством транспортных услуг этого уровня.

Протоколы уровней MAC и LLC взаимно независимы — каждый протокол уровня MAC может применяться с любым протоколом уровня LLC, и наоборот.

Стандарты IEEE 802 имеют достаточно четкую структуру, приведенную на рис. 62. Эта структура появилась в результате большой работы, проведенной комитетом 802 по выделению в разных фирменных технологиях общих подходов и общих функций, а также согласованию стилей их описания. В результате канальный уровень был разделен на два упомянутых подуровня. Описание каждой технологии разделено на две части: описание уровня MAC и описание физического уровня. Как видно из рисунка, практически у каждой технологии единственному протоколу уровня MAC соответствует несколько вариантов протоколов физического уровня (на рисунке в целях экономии места приведены только технологии Ethernet и Token Ring, но все сказанное справедливо также и для остальных технологий, таких как ArcNet, FDDI, l00VG-AnyLAN).

Рис. 62. Структура стандартов IEEE 802.X

Над канальным уровнем всех технологий изображен общий для них протокол LLC, поддерживающий несколько режимов работы, но независимый от выбора конкретной технологии. Стандарт LLC курирует подкомитет 802.2. Даже технологии, стандартизованные не в рамках комитета 802, ориентируются на использование протокола LLC, определенного стандартом 802.2, например протокол FDDI, стандартизованный ANSI.

Особняком стоят стандарты, разрабатываемые подкомитетом 802.1. Эти стандарты носят общий для всех технологий характер. В подкомитете 802.1 были разработаны общие определения локальных сетей и их свойств, определена связь трех уровней модели IEEE 802 с моделью OSI. Но наиболее практически важными являются стандарты 802.1, которые описывают взаимодействие между собой различных технологий, а также стандарты по построению более сложных сетей на основе базовых топологий. Эта группа стандартов носит общее название стандартов межсетевого взаимодействия (internetworking). Сюда входят такие важные стандарты, как стандарт 802. ID, описывающий логику работы моста/коммутатора, стандарт 802.1Н, определяющий работу транслирующего моста, который может без маршрутизатора объединять сети Ethernet и FDDI, Ethernet и Token Ring и т. п. Сегодня набор стандартов, разработанных подкомитетом 802.1, продолжает расти. Например, недавно он пополнился важным стандартом 802.1Q, определяющим способ построения виртуальных локальных сетей VLAN в сетях на основе коммутаторов.

Стандарты 802.3,802.4,802.5 и 802.12 описывают технологии локальных сетей, которые появились в результате улучшений фирменных технологий, легших в их основу. Так, основу стандарта 802.3 составила технология Ethernet, разработанная компаниями Digital, Intel и Xerox (или Ethernet DIX), стандарт 802.4 появился | как обобщение технологии ArcNet компании Datapoint Corporation, а стандарт 802.5 в основном соответствует технологии Token Ring компании IBM.

Читайте также:  Соответствие тестовых норм выборке стандартизации тестовым нормам той

Исходные фирменные технологии и их модифицированные варианты — стандарты 802.х в ряде случаев долгие годы существовали параллельно. Например, технология ArcNet так до конца не была приведена в соответствие со стандартом 802.4 (теперь это делать поздно, так как где-то примерно с 1993 года производство оборудования ArcNet было свернуто). Расхождения между технологией Token Ring и стандартом 802.5 тоже периодически возникают, так как компания IBM регулярно вносит усовершенствования в свою технологию и комитет 802.5 отражает эти усовершенствования в стандарте с некоторым запозданием. Исключение составляет технология Ethernet. Последний фирменный стандарт Ethernet DIX был принят в 1980 году, и с тех пор никто больше не предпринимал попыток фирменного развития Ethernet. Все новшества в семействе технологий Ethernet вносятся только в результате принятия открытых стандартов комитетом 802.3.

Более поздние стандарты изначально разрабатывались не одной компанией, а группой заинтересованных компаний, а потом передавались в соответствующий подкомитет IEEE 802 для утверждения. Так произошло с технологиями Fast Ethernet, l00VG-AnyLAN, Gigabit Ethernet. Группа заинтересованных компаний образовывала сначала небольшое объединение, а затем по мере развития работ к нему присоединялись другие компании, так что процесс принятия стандарта носил открытый характер.

Сегодня комитет 802 включает следующий ряд подкомитетов, в который входят как уже упомянутые, так и некоторые другие:

802.1 — Internetworking — объединение сетей;

802.2 — Logical Link Control, LLC — управление логической передачей данных;

802.3 — Ethernet с методом доступа CSMA/CD;

802.4 — Token Bus LAN — локальные сети с методом доступа Token Bus;

802.5 — Token Ring LAN — локальные сети с методом доступа Token Ring;

802.6 — Metropolitan Area Network, MAN — сети мегаполисов;

802.7 — Broadband Technical Advisory Group — техническая консультационная группа по широкополосной передаче;

802,8 — Fiber Optic Technical Advisory Group — техническая консультационная группа по волоконно-оптическим сетям;

802.9 — Integrated Voice and data Networks — интегрированные сети передачи голоса и данных;

802.10 — Network Security — сетевая безопасность;

802.11 — Wireless Networks — беспроводные сети;

802.12 — Demand Priority Access LAN, l00VG-AnyLAN — локальные сети с методом доступа по требованию с приоритетами.

Стандарт Ethernet был принят в 1980 году. Фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт Ethernet. Число сетей, построенных на основе этой технологии, к настоящему моменту оценивается в 5 миллионов, а количество компьютеров, работающих в таких сетях, — в 50 миллионов.

Основной принцип, положенный в основу Ethernet, — случайный метод доступа к разделяемой среде передачи данных. В качестве такой среды может использоваться толстый или тонкий коаксиальный кабель, витая пара, оптоволокно или радиоволны (кстати, первой сетью, построенной на принципе случайного доступа к разделяемой среде, была именно радиосеть).

В стандарте Ethernet строго зафиксирована топология электрических связей. Компьютеры подключаются к разделяемой среде в соответствии с типовой структурой «общая шина». С помощью разделяемой во времени шины любые два компьютера (устройства) могут обмениваться данными. Управление доступом к линии связи осуществляется специальными контроллерами — сетевыми адаптерами Ethernet. Каждый компьютер, а более точно, каждый сетевой адаптер, имеет уникальный адрес.

В зависимости от типа физической среды стандарт IEEE 802.3 имеет модификации: 10Base-5, 10Base-2, 10Base-T, 10Base-FL, l0Base-FB. Для передачи двоичной информации по кабелю для всех вариантов физического уровня технологии Ethernet, обеспечивающих пропускную способность 10 Мбит/с, используется манчестерский код.

Все виды стандартов Ethernet основаны на одинаковом методе разделения среды передачи данных — метод доступа CSMA/CD (Carrier Sense Multiple Access / Collision Detection) и обеспечивают скорость передачи по шине 10 Мбит/с. По-русски этот метод доступа называется МДКН/ОС (множественный доступ с контролем носителя и обнаружением столкновений).

Физические спецификации технологии Ethernet по стандарту IEE 802.3 на сегодняшний день включают следующие среды передачи данных:

• 10Base-5 -коаксиальный кабель диаметром 0,5 » («толстый» коаксиал). С волновым сопротивлением 50 Ом и максимальной длинной сегмента 500 м (без повторителей);

• 10Base-2 — коаксиальный кабель диаметром 0,25 » («тонкий» коаксиал). С волновым сопротивлением 50 Ом и максимальной длинной сегмента 185м (без повторителей);

• 10Base-T — кабель с неэкранированной витой парой (UTP – Unshielded Twisted Pair), образующий звездообразную топологию на основе концентратора, расстояние между концентратором и конечным узлом не более 100 м.

• 10Base-F — волоконно-оптический кабель с топологией аналогичной топологии стандарта 10Base-T.

Параметры спецификаций физического уровня стандарта Ethernet приведены в таблице **.

Параметры спецификаций физического уровня для стандарта Ethernet

Среда передачи данных

Максимальная длина сегмента, м

Максимальное расстояние между узлами сети (при использовании повторителей), м

Источник

Анализ источников стандартизация сетей структура стандарта ieee 802 x

В 1980 году в институте IEEE был организован «Комитет 802 по стандартизации локальных сетей», в результате работы которого было принято семейство стандартов IEEE 802.х, которые содержат рекомендации для проектирования нижних уровней локальных сетей. Позже результаты его работы легли в основу комплекса международных стандартов ISO 8802-1. 5. Эти стандарты были созданы на основе очень распространенных фирменных стандартов сетей Ethernet, ArcNet и Token Ring.

(Помимо IEEE в работе по стандартизации протоколов локальных сетей принимали участие и другие организации. Так для сетей, работающих на оптоволокне, американским институтом по стандартизации ANSI был разработан стандарт FDDI, обеспечивающий скорость передачи данных 100 Мб/с. Работы по стандартизации протоколов ведутся также ассоциацией ECMA (European Computer Manufacturers Association), которой приняты стандарты ECMA-80, 81, 82 для локальной сети типа Ethernet и впоследствии стандарты ECMA-89, 90 по методу передачи маркера.)

Стандарты семейства IEEE 802.x охватывают только два нижних уровня семиуровней модели OSI — физический и канальный. Это связано с тем, что именно эти уровни в наибольшей степени отражают специфику локальных сетей. Старшие же уровни, начиная с сетевого, в значительной степени имеют общие черты как для локальных, так и для глобальных сетей.

  • подуровень управления доступом к среде (Media Access Control, MAC)
  • подуровень логической передачи данных (Logical Link Control, LLC).

MAC-уровень появился из-за существования в локальных сетях разделяемой среды передачи данных. Именно этот уровень обеспечивает корректное совместное использование общей среды, предоставляя ее в соответствии с определенным алгоритмом в распоряжение той или иной станции сети. После того, как доступ к среде получен, ею может пользоваться следующий подуровень, организующий надежную передачу логических единиц данных — кадров информации. В современных локальных сетях получили распространение несколько протоколов MAC-уровня, реализующих различные алгоритмы доступа к разделяемой среде. Эти протоколы полностью определяют специфику таких технологий как Ethernet, Token Ring, FDDI, 100VG-AnyLAN.

Уровень LLC отвечает за достоверную передачу кадров данных между узлами, а также реализует функции интерфейса с прилегающим к нему сетевым уровнем. Для уровня LLC также существует несколько вариантов протоколов, отличающихся наличием или отсутствием на этом уровне процедур восстановления кадров в случае их потери или искажения, то есть отличающихся качеством транспортных услуг этого уровня.

Протоколы уровней MAC и LLC взаимно независимы — каждый протокол MAC-уровня может применяться с любым типом протокола LLC-уровня и наоборот.

  • В разделе 802.1 приводятся основные понятия и определения, общие характеристики и требования к локальным сетям.
  • Раздел 802.2 определяет подуровень управления логическим каналом LLC.
  • Разделы 802.3 — 802.5 регламентируют спецификации различных протоколов подуровня доступа к среде MAC и их связь с уровнем LLC:
    • стандарт 802.3 описывает коллективный доступ с опознаванием несущей и обнаружением конфликтов (Carrier sense multiple access with collision detection — CSMA/CD), прототипом которого является метод доступа стандарта Ethernet;
    • стандарт 802.4 определяет метод доступа к шине с передачей маркера (Token bus network), прототип — ArcNet;
    • стандарт 802.5 описывает метод доступа к кольцу с передачей маркера (Token ring network), прототип — Token Ring.

    Для каждого из этих стандартов определены спецификации физического уровня, определяющие среду передачи данных (коаксиальный кабель, витая пара или оптоволоконный кабель), ее параметры, а также методы кодирования информации для передачи по данной среде.

    Все методы доступа используют протоколы уровня управления логическим каналом LLC, описанным в стандарте 802.2.

    Источник